使用tensorboard可视化loss和correct

1.用try...except...避免因版本不同出现导入错误问题

try:

  image_summary = tf.image_summary

  scalar_summary = tf.scalar_summary

  histogram_summary = tf.histogram_summary

  merge_summary = tf.merge_summary

  SummaryWriter = tf.train.SummaryWriter

except:

  image_summary = tf.summary.image

  scalar_summary = tf.summary.scalar

  histogram_summary = tf.summary.histogram

  merge_summary = tf.summary.merge

  SummaryWriter = tf.summary.FileWriter


2. 将代码写入作用域(作用域不影响代码的运行)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))

optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

 

# Evaluate model

accuracy=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,1),tf.argmax(y,1)),"float"))

# accuracy=correct_prediction/170000

 

#use tensorboard

loss_summary = scalar_summary('loss', cost)
acc_summary = scalar_summary('accuracy', accuracy)


 3.将要保存的变量存在一起

另外可使用 tf.merge_all_summaries() 或者 tf.summary.merge_all()

merged = merge_summary([loss_summary,acc_summary]) 
 
只需要输出loss:merged = merge_summary([loss_summary]) 

 4.定义保存路径(在sess中完成,写在迭代之前),其中/home/qiaobo/文档/bilstm_CoNLL2003_8_100为保存日志的路径 

 writer = SummaryWriter('/home/qiaobo/文档/bilstm_CoNLL2003_8_100', sess.graph)

5.训练模型的同时训练变量集合merged(在sess中完成,counter为计数,每训练一次增加1)
 summary,accuracy_,loss_value = sess.run([merged,accuracy,cost],feed_dict={x:np.reshape(test_words,(-1,n_steps,n_inputs)),y:np.reshape(test_tags,(-1,n_tags))})

 

counter += 1

writer.add_summary(summary, counter)

 6. 在bilstm_CoNLL2003_8_100文件下可以看到一个生成的日志事件

 7. 运行Tensorboard
(1)cd 到bilstm_CoNLL2003_8_100文件夹的上一级目录 

(2)输入命令行: tensorboard --logdir=bilstm_CoNLL2003_8_100
(3)回车,就自动加载。注意:最下面黄色线的那个网址,你复制网址到Chrome浏览器中就可以打开TensorBoard。
一般为:
http://ip:6006

常见错误:
1.
ERROR:tensorflow:TensorBoard attempted to bind to port 6006, but it was already in use 
TensorBoard attempted to bind to port 6006, but it was already in use  

解决方法:(1)命令行:lsof -i:6006
                 (2)命令行:kill -9 pid
                   (3) 命令行:tensorboard --logdir /home/qiaobo/文档/bilstm_CoNLL2003_8_100

你可能感兴趣的:(tensorflow,tensorboard)