- 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
同学小张
大模型人工智能学习gpt笔记MetaGPTagi智能体
本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。本文为该课程的第二章(智能体综述及多智能体框架介绍)笔记)。文章目录0.温故而知新-再看AIAgent是什么1.一个AIAgent实例介绍-BabyAGI2.多智能体框架比较3.警告?0.温故而知新-再看AIA
- 【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析
视觉萌新、
深度强化学习深度Q网络DQN
【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析介绍常用技巧算法步骤DQN源码实现网络结构训练策略DQN算法进阶双深度Q网络(DoubleDQN)竞争深度Q网络(DuelingDQN)优先级经验回放(PER)噪声网络(noisy)本文图片与源码均来自《EasyRL》:https://github.com/datawhalechina/easy-rl介绍 核心思想:训练动作价值函数Q
- DataWhale Pandas数据分析 Task01:预备知识
Shawnxs_
DataWhalePandas数据分类pythonpandas
文章目录练习Ex1:利用列表推导式写矩阵乘法Ex2:更新矩阵Ex3:卡方统计量Ex4:改进矩阵计算的性能Ex5:连续整数的最大长度心得体会练习Ex1:利用列表推导式写矩阵乘法一般的矩阵乘法根据公式,可以由三重循环写出:In[138]:M1=np.random.rand(2,3)In[139]:M2=np.random.rand(3,4)In[140]:res=np.empty((M1.shape[
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 用Transformer实现OCR字符识别!
Datawhale
大数据数据挖掘编程语言python计算机视觉
Datawhale干货作者:安晟、袁明坤,Datawhale成员在CV领域中,transformer除了分类还能做什么?本文将采用一个单词识别任务数据集,讲解如何使用transformer实现一个简单的OCR文字识别任务,并从中体会transformer是如何应用到除分类以外更复杂的CV任务中的。全文分为四部分:一、数据集简介与获取二、数据分析与关系构建三、如何将transformer引入OCR四
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- Datawhale X 李宏毅苹果书 AI夏令营-深度学入门task2:线性模型
m0_53743757
人工智能机器学习算法
1.线性模型把输入的特征x乘上一个权重,再加上一个偏置就得到预测的结果,这样的模型称为线性模型(linearmodel)2.分段线性模型线性模型也许过于简单,x1跟y可能中间有比较复杂的关系。线性模型有很大的限制,只能表示一条直线,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。所以需要写一个更复杂的、更有灵活性的、有未知参数的函数。分段线性曲线(piecewiselinearcurve
- 聪明办法学Python第1节:启航
m0_53743757
python开发语言
作业链接:https://hydro.ac/d/datawhale_p2s/user/53146第一行代码print("聪明办法学Python")#输出:聪明办法学PythonHelloWorld的由来1972年,贝尔实验室成员BrianKernighan首次在程序中使用"hello,world"。注释Comment分类:单行注释,使用#开头多行注释,使用'''或"""包裹起来作用:注释主要是用于
- Datawhale七月组队——动手学数据分析 Task01 数据加载及探索性数据分析
郁浓
第一次的打卡内容包括数据的载入及初步观察、Pandas基础以及探索性数据分析三个部分。1.数据的载入及初步观察这一节内容中,刚开始绝对路径的设置中"/"和'''\'用错了,直接拿文件夹的路径粘贴过来,导致运行失败使用pandas中read_csv读取csv数据时,对于有表头的数据,将header设置为空(None),会报错:pandas_libs\parsers.pyxinpandas._libs
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- Datawhale AI夏令营第五期CV Task02
m0_60530253
人工智能深度学习
一、yolo模型介绍YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。YOLO算法的一个显著特点是它在单个网络
- Datawhale AI夏令营第五期魔搭-CV竞赛方向Task1笔记--初识yolo模型
切记 我是一个 温柔的 刀客
YOLO目标检测机器学习
DatawhaleAI夏令营第五期魔搭-CV竞赛方向Task1笔记–初识yolo模型作者:福州大学我是一个温柔的刀客2024/8/221.赛题简介本赛题最终目标是开发一套智能识别系统,能够自动检测和分类城市管理中的违规行为。该系统应利用先进的图像处理和计算机视觉技术,通过对摄像头捕获的视频进行分析,自动准确识别违规行为,并及时向管理部门发出告警,以实现更高效的城市管理。本质上是属于CV中的目标检测
- Datawhale Al夏令营第三期 Al+物质科学task2学习笔记
weixin_75033552
学习笔记
AI4Science是一个较为普遍的术语,通常指的是人工智能在科学研究和技术发展中的应用。它涵盖了各种科学领域,包括物理学、化学、生物学、地球科学等。虽然没有一个特定的确切历史,但可以描述人工智能在科学研究中的一些早期里程碑和发展趋势。早期发展知识表示与推理:20世纪70年代末和80年代初,早期的AI研究开始探索如何用机器推理来模拟人类的思维过程。这种推理方式被应用于物理学、化学等学科中,尝试解决
- Datawhale x李宏毅苹果书入门 AI夏令营 task03学习笔记
weixin_75033552
人工智能学习笔记
实践方法论训练模型的基本步骤:(如下图所示)用训练集训练模型,(最终得出来最优的参数集)将最优参数集带入模型中,用测试集测试模型(人话:将最优参数集带入原来函数中,用测试集的x值计算y值)(这个过程就叫做预测)训练过程中遇到问题的解决攻略(看下图的方式是“前序遍历”)modelbias出现问题的情况:1.看trainingdata的loss,太大;2.当你模型无论如何调整参数,训练的结果还是不够好
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- Datawhale AI夏令营
于弋gg
人工智能计算机视觉python
一、分析CV识别任务任务分析自己研究生期间做过的大多是无监督任务,监督任务做的很少。比如,之前用过yolov5做过滑动验证码的识别,给滑动验证码的缺口打标签是项耗时费力的工作。本次任务相同,是给非机动车、机动车打标签。frame_id:不同帧event_id:一帧里面出现的不同车辆idbbox:车辆位置模型输入输出猜测1)如果识别车辆很容易,那么输入原始音频x,标出每帧的位置作为输出,记为y。放进
- [Datawhale#1] cv task1 - Datawhale AI夏令营
cinboxer
cvpythonnumpypandasmatplotlib
参加cv方面的培训,记录自己的一些感悟吧。报名赛事2024“大运河杯”数据开发应用创新大赛——城市治理厚德云远程算力租赁https://portal.houdeyun.cn/register?from=Datawhale可以用3090,速度很快!baselineaptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datas
- [Datawhale AI 夏令营][第五期]智能识别系统-Task1笔记
keexh
人工智能笔记
任务是发布在MARS大数据服务平台的2024“大运河杯”数据开发应用创新大赛——城市治理。了解智慧河长的朋友可能听说类似的项目,它们可以识别河道中出现的一些问题。这次的智能识别系统与前者有相似的地方,但这个系统将聚焦城市违规行为的智能检测,通过研究开发高效可靠的计算机视觉算法,提升违规行为检测识别的准确度,降低对大量人工的依赖,提升检测效果和效率,从而推动城市治理向更高效、更智能、更文明的方向发展
- DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛-task2
十分钟ll
DataWhaleAI夏令营人工智能目标跟踪计算机视觉DataWhale竞赛大运河杯机器学习
DataWhaleAI夏令营2024大运河杯-数据开发应用创新赛YOLO(YouOnlyLookOnce)上分心得分享YOLO(YouOnlyLookOnce)YOLO算的上是近几年最火的目标检测模型了,被广泛的应用在工业、学术等领域。YOLOv1(YouOnlyLookOnce第一版)于2016年由JosephRedmon等人在其论文《YouOnlyLookOnce:Unified,Real-T
- Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
z are
人工智能深度学习
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着损失函数的梯度方向更新模型参数,以最小化损失值。公式如下:θt+1←θt-η*∇θL(θt)其中,θ表示模型参数,η表示学习率,L表示损失函数,∇θL表示损失函数关于参数的梯度。然而,梯度下降在复杂误差表面上存在局限性。例如,在鞍点或局部最小值处,梯度接近零,导致模
- 2020-03-24
黑乎乎AI
Datawhale零基础入门数据挖掘-Task2数据分析【代码摘要】赛题:零基础入门数据挖掘-二手车交易价格预测地址:[https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX]EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 局部极小值与鞍点 Datawhale X 李宏毅苹果书 AI夏令营
千740
人工智能深度学习机器学习
1,为什么随着参数的不断更新,损失无法降低?当参数对损失微分为零的时候,梯度下降就不能再更新参数了,训练就停下来了,损失不再下降了,此时梯度接近于0。我们把梯度为零的点统称为临界点(criticalpoint)。损失没有办法再下降,也许是因为收敛在了临界点,临界点包括局部极小值,局部极大值和鞍点(梯度是零且区别于局部极小值和局部极大值(localmaximum)的点)2,如果一个点的梯度接近于0,
- Datawhale X 李宏毅苹果书 AI夏令营Day03
xuanEpiphany29
人工智能
一、打卡Datawhale二、学习1、文档学习图中展示了一个函数集合,其中包含多个未知参数的函数fθ1(x)和fθ2(x)。通过将这些函数组合起来,可以得到一个更大的函数集合。然而,如果这个函数集合太小了,没有包含任何一个函数,那么即使找到了一个最优的θ∗,其损失仍然不够低。这就像大海里捞针一样,想要找到一个损失低的函数,但最终却发现这个函数并不在这个函数集合内。在这种情况下,可以通过重新设计模型
- Datawhale X 李宏毅苹果书 AI夏令营Day02
xuanEpiphany29
人工智能
一、打卡Datawhale进入打卡链接选择相对应的任务打卡就可以了二、学习1、线性模型依旧是b站上老师的授课视频,我找到知乎上解释很好的文章,分享一下机器学习(一)线性模型————理论篇线性回归模型、对数几率模型、线性判别分析模型、多分类学习模型-知乎(zhihu.com)(1)、模型概述线性模型是机器学习中一种非常基础且重要的模型,广泛应用于分类和回归任务。线性模型的基本思想是通过一个线性方程来
- FastAPI部署大模型Llama 3.1
记得叫Mark周更
人工智能
项目地址:self-llm/models/Llama3_1/01-Llama3_1-8B-InstructFastApi部署调用.mdatmaster·datawhalechina/self-llm(github.com)目的:使用AutoDL的深度学习环境,简单部署大模型环境准备考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了LLaMA3-1的环境镜像,点击下方链接并直接创
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- (202402)多智能体MetaGPT入门2:AI Agent知识体系结构
早上真好
参与dw开源学习语言模型人工智能
文章目录前言1智能体定义2热门智能体案例3智能体的宏观机会4AIAgent与Sy1&Sy2观看视频前言感谢datawhale组织开源的多智能体学习内容,飞书文档地址在https://deepwisdom.feishu.cn/wiki/KhCcweQKmijXi6kDwnicM0qpnEf本章主要为Agent相关理论知识的学习。1智能体定义智能体=LLM+观察+思考+行动+记忆多智能体=智能体+环境
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1