- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 30个网络抓包/调试工具-IT运维与网络工程师必会,从零基础到精通,收藏这篇就够了!
程序员羊羊
黑客网安工程师网络安全网络运维安全数据库压力测试web安全
运维老兵都知道,网络抓包这活儿,就像给网络做CT,透视内部问题。但工具再多,用不对也是白搭。今天咱就来聊聊30款抓包/调试“神器”,别再只会用Wireshark了!一、协议分析工具:别光看表面,还得懂“潜台词”Wireshark:老牌劲旅,但别迷信它简介:开源界的扛把子,协议分析界的“瑞士军刀”,跨平台支持是基本操作。特点:协议多?那是必须的,2000+协议解析,过滤表达式(tcp.port==8
- 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
猿享天开
医学影像支持向量机机器学习人工智能算法
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 从0到1掌握OpenCV!Python图像处理实战全解析(附代码+案例)
小张在编程
Python学习opencvpython图像处理
引言你有没有想过,手机里的美颜滤镜如何精准识别五官?监控摄像头如何在人流中锁定可疑目标?医学影像软件如何从CT片中快速标注病灶?这些“神奇操作”的背后,往往藏着一个低调的“图像处理神器”——OpenCV。作为Python生态中最受欢迎的计算机视觉库,它用一行行代码将抽象的像素点变成可操作的“数字画布”。今天,我们就从最基础的图像读写开始,手把手带你解锁OpenCV的“十八般武艺”,从图像处理小白变
- js 允许生成特殊的变量名 基于字符集编码混淆的 XSS 绕过漏洞 -- Google 2025 Lost In Transliteration
A5rZ
网络安全
题目实现了一个字符转换工具在/file路由用户可以通过ct参数自定义Content-Type//文件路由-提供静态文件服务(JS和CSS),支持内容类型验证app.MapGet("/file",(stringfilename="",string?ct=null,string?q=null)=>{//根据文件名查找对应的模板文件string?template=FindFile(filename);i
- CTF-NetA:CTF网络流量分析的得力助手
叶彩曼Darcy
CTF-NetA:CTF网络流量分析的得力助手CTF-NetA项目地址:https://gitcode.com/gh_mirrors/ct/CTF-NetA在网络安全领域,CTF(CaptureTheFlag)比赛是检验和提升技术能力的重要途径。然而,面对复杂的网络流量分析任务,许多参赛者往往感到力不从心。今天,我要向大家推荐一款专为CTF比赛设计的网络流量分析工具——CTF-NetA,它将助你一
- XEN和KVM云计算虚拟化技术
电脑天空
视频教程云计算kvmxen
一、XEN和KVM云计算虚拟化技术01_虚拟化技术基础原理详解02_Xen虚拟化及DomU的实现03_Xen基于iscsi共享实现实时迁移04_kvm虚拟化下载链接:链接:http://pan.baidu.com/s/1milQbNU密码:90ct二、xen虚拟化技术实战详解视频教程01-xen基本原理02-xen安装与使用详解03-xen基本原理及安装使用总结04-xen的使用详解05-xen的
- No module named ‘skimage‘的问题及解决
蓝天居士
AIpycharm
项目中执行importtorchxrayvisionasxrv时出现以下错误:Traceback(mostrecentcalllast):File"D:/研究生/毕业设计/COVID19/COVID19_CT/conduct.py",line14,inimporttorchxrayvisionasxrvFile"D:\研究生\毕业设计\COVID19\COVID19_CT\torchxrayvis
- CSP - J 400分题单总结(洛谷题号)
mochensage
刷题训练算法
(网络整理侵删)队列T2:1540、10457、B3867、3512、11963、11138、9422、8661、1638、9518、2629T3:2058、3662、1419、6033、6510、8102、3522、1126、9588、3419T4:2216、2564栈T2:1165、1901、2866、CF26B、CF1073B、CF821CT3:4387、6155、3952T4:6503前缀
- SimpleITK——创建nrrd体素模型
bianguanyue
C#c#健康医疗算法
在介绍如何生成nrrd前,了解一下为什么医学影像上一般使用nrrd的体素模型?为什么医学影像上一般使用nrrd的体素模型?在医学影像领域,NRRD(NearlyRawRasterData)格式被广泛用于存储体素模型(如CT、MRI数据),主要基于以下技术优势:1.灵活的数据存储方式支持原始数据无损存储NRRD可直接存储未经压缩的体素数据(如16位整型、32位浮点),避免DICOM等格式
- Flux Reconstruction(FR,通量重构)方法
东北豆子哥
重构算法人工智能
文章目录FluxReconstruction(FR,通量重构)方法**核心思想****关键步骤****优势****文献推荐****注意事项**FluxReconstruction(FR,通量重构)方法FluxReconstruction(FR,通量重构)方法是一种高阶精度的数值计算框架,主要用于求解偏微分方程(尤其是双曲守恒律方程),在计算流体力学(CFD)等领域有广泛应用。它结合了间断有限元法(
- Patch Position Embedding (PPE) 在医疗 AI 中的应用编程分析
Allen_Lyb
数智化教程(第二期)embedding人工智能机器学习健康医疗
一、PPE的核心原理与医疗场景适配性位置编码的本质需求在医疗影像(如CT、MRI、病理切片)中,Transformer需要将图像划分为若干Patch并作为序列输入。但如果不注入空间信息,模型难以区分同一病灶在不同坐标的语义差异。传统的绝对位置编码(如SinusoidalPE)对等距网格有效,却无法灵活适配病灶大小多变、图像分辨率不一的医学场景。PatchPositionEmbedding(PPE)
- 54-Oracle 23 ai DBMS_HCHECK新改变-从前的hcheck.sql
远方1609
oracle数据库sqldatabase大数据
OracleHcheck(HealthCheck)是Oracle数据库内置的健康监测工具,自动化检查数据库的核心问题,包括数据字典一致性、性能瓶颈、空间使用及安全隐患。本质是数据字典的CT扫描仪,其核心价值在于将“字典逻辑错误”这类灰色地带的故障扼杀在初始阶段。Hcheck专注修复元数据逻辑层的隐蔽错误(非物理文件损坏),这类问题虽然不会立即导致崩溃,但会逐步侵蚀稳定性。通过定期执行CRITICA
- Goursat问题解的公式推导
weixin_30777913
算法
题目问题7.求Goursat问题的解的公式utt−c2uxx=0,x>c∣t∣;(2.C.11)u_{tt}-c^2u_{xx}=0,\quadx>c|t|;\tag{2.C.11}utt−c2uxx=0,x>c∣t∣;(2.C.11)当t0t>0t>0时,u∣x=ct=h(t)u|_{x=ct}=h(t)u∣x=ct=h(t).\tag{2.C.13}其中g(0)=h(0)g(0)=h(0)g(
- 大规模胰腺癌检测通过非对比增强CT和深度学习| 文献速递-视觉通用模型与疾病诊断
有Li
深度学习人工智能
Title题目Large-scalepancreaticcancerdetectionvianon-contrastCTanddeeplearning大规模胰腺癌检测通过非对比增强CT和深度学习01文献速递介绍胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,通常在晚期和不可手术的阶段被检测到。早期或偶然发现与延长生存期相关,但使用单一测试筛查无症状个体的PDAC仍然不可行,因为假阳性的潜在危害和低
- 医图论文 AAAI‘25 | VOILA: 基于体素与语言交互的复杂度感知CT图像通用分割方法
小白学视觉
医学图像处理论文解读人工智能计算机视觉医学图像处理论文解读深度学习AAAI
论文信息题目:VOILA:Complexity-AwareUniversalSegmentationofCTimagesbyVoxelInteractingwithLanguageVOILA:基于体素与语言交互的复杂度感知CT图像通用分割方法作者:ZishuoWan,YuGao,WanyuanPang,DaweiDing论文创新点引入体素级对比学习:本文首次将体素级对比学习引入医学图像分割任务。通
- 嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记04:从零开始创建工程模板并开始点灯
观寻常
嵌入式蓝桥杯蓝桥杯stm32学习
系列文章目录嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记01:赛事介绍与硬件平台嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记02:开发环境安装嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记03:G4时钟结构嵌入式|蓝桥杯STM32G431(HAL库开发)——CT117E学习笔记04:从零开始创建工程模板并开始点灯嵌入
- 什么是三维重建?如何从二维图像获取三维信息?——从原理到实战的深度解析
唐宇迪(学习规划+技术答疑)
人工智能深度学习神经网络计算机视觉三维重建机器学习pytorch
大家好,我是唐宇迪。这几年带学员做计算机视觉项目时,发现三维重建是绕不开的核心技术——有人用单目摄像头重建物体模型,有人用多视图构建建筑BIM模型,还有人在医疗领域通过CT图像重建器官三维结构。但新手常被相机标定、对极几何、点云配准等概念困扰,甚至混淆三维重建与三维建模的区别。作为计算机视觉的重要分支,三维重建让二维图像拥有了深度信息,在工业检测、医疗诊断、元宇宙等领域发挥关键作用。今天这篇600
- YOLOv8医疗影像 第四章:典型应用场景实现
路飞VS草帽
YOLOv各版本的应用详细说明及代码示例YOLOv8原理与源代码讲解---六大章YOLOv8医疗影像--八大章YOLOpython开发语言典型应用场景实现医疗影像
第四章:典型应用场景实现4.1病灶检测系统(肿瘤/骨折)CT肺结节检测全流程pythonimportpydicomfromglobimportglobimportnumpyasnpclassNoduleDetector:def__init__(self,model_path='yolov8n_nodule.pt'):self.model=YOLO(model_path)self.slice_cac
- 【C++语言】字符串String练习题
风铃子加油
C++开发语言c++stringleetcode牛客
题目连接:仅仅反转字母1.仅仅反转字母给你一个字符串s,根据下述规则反转字符串:所有非英文字母保留在原有位置。所有英文字母(小写或大写)位置反转。返回反转后的s。示例1:输入:s="ab-cd"输出:"dc-ba"示例2:输入:s="a-bC-dEf-ghIj"输出:"j-Ih-gfE-dCba"示例3:输入:s="Test1ng-Leet=code-Q!"输出:"Qedo1ct-eeLg=nts
- 基于CT图像的硬参数共享多任务分析:肝脏肿瘤分割与良恶性分类
pk_xz123456
MATLAB算法仿真模型分类数据挖掘人工智能
基于CT图像的硬参数共享多任务分析:肝脏肿瘤分割与良恶性分类摘要本文提出了一种基于硬参数共享的多任务深度学习模型,用于同时完成肝脏CT图像中的肿瘤分割和良恶性分类任务。该模型采用共享编码器提取通用特征,并通过任务特定解码器实现多任务协同优化。实验表明,相比单任务U-Net(分割)和ResNet(分类)模型,多任务框架在Dice系数、分类准确率等指标上提升显著,同时减少参数量约28.6%。%%硬参数
- 深入剖析AI大模型:用神经网络构建医疗影像辅助诊断系统
chilavert318
熬之滴水穿石人工智能神经网络深度学习
今天以一个具体的场景来说说怎么构建一个神经网络。就拿医疗领域来说,在医疗领域,精准的影像诊断对疾病治疗至关重要。当一位放射科医生面对肺部CT影像时,神经网络正以其独特的"视觉认知"能力,成为辅助诊断的重要工具。以肺部结节检测为例,深入剖析神经网络在医疗影像场景中的完整应用流程,将抽象理论转化为可感知的技术实践。一、场景化理论建模:医疗影像中的神经网络逻辑1、神经元的医学隐喻:结节特征检测器在肺部C
- 医学影像基础与实践:基于传统算法的CT影像探索
t0_54program
大数据与人工智能算法个人开发
在医学影像领域,人们往往容易将目光聚焦于人工智能(AI)技术,然而,理解和掌握基础的图像处理算法同样至关重要。这不仅有助于我们深入了解医学影像的本质,还能在不依赖深度学习的情况下,明确其应用边界。本次,我们就一同通过实践教程,深入了解医学影像,特别是计算机断层扫描(CT)技术。CT成像基础CT扫描的物理学原理CT利用X射线束来获取人体的3D像素强度。具体来说,加热的阴极释放出高能电子束,这些电子束
- 全网最全医学图像数据汇总
概述⚠️重要声明:这些数据集仅适用于学术研究用途。目录CT数据集MRI数据集超声数据集内窥镜数据集病理数据集多模态数据集PET数据集OCT数据集皮肤镜数据集CT数据集名称任务类型部位格式数量下载链接MSDLung分割肺3D96下载MSDLiver分割肝脏3D201下载MSDSpleen分割脾脏3D61下载MSDHepaticVessels分割肝门静脉3D443下载MSDPancreas分割胰腺3D
- 千亿医疗AI市场爆发:三甲医院如何靠大模型实现90%诊断准确率?
摆烂大大王
llamadeepseek人工智能llamadeepseekAIGC健康医疗
凌晨三点的北京协和医院放射科,最后一份胸部CT影像被输入AI系统。屏幕瞬间标记出5处微小结节,三维重建图精准勾勒血管绕行路径,并弹出历史对比数据:“3号结节体积半年增长15%,边缘毛刺征阳性,建议穿刺活检”。主治医师轻点审核键,结构化报告自动生成——这是2025年中国顶级三甲医院的日常一幕,也是AI大模型重构医疗诊断链的缩影。一、技术突破:从单点试用到临床刚需影像诊断进入“秒级时代”肺结节检测:A
- pycharm快捷键如何快速跳到一行末尾
Coding小公仔
pycharm
pycharm快捷键如何快速跳到一行末尾常用快捷键:PyCharm之快速跳到文件的开头和尾部快捷键(Windows)Ctrl+Home=>头部Ctrl+End=>尾部快速生成try…catch…编辑类:Ctrl+D复制选定的区域或行Ctrl+Y删除选定的行Ctrl+Alt+L代码格式化Ctrl+Alt+O优化导入(去掉用不到的包导入)Ctrl+鼠标简介/进入代码定义Ctrl+/行注释、取消注释Ct
- {“error“:{“root_cause“:[{“type“:“script_exception“,“reason“:“compile error“,“script_stack“:[“... par
总是幸福的老豌豆
日常工作总结java
前言最近想更新ES里面已经存在的数据,报错错误如下{"error":{"root_cause":[{"type":"script_exception","reason":"compileerror","script_stack":["...params.objId;ctx._source.测试搜索1=params.userNameOrRo...","^----HERE"],"script":"ct
- php 自定义排序,thinkphp6.0自定义排序order by field
weixin_39734184
php自定义排序
相信很多时候我们需要有个自定义排序的功能,比如登录用户的点赞排序到第一位等等。这种情况下我们一般都是使用自定义排序的功能,那么原生sql又是怎么实现的呢?```SELECT*FROM`ct_xxx`ORDERBYfi
- 【证书与信任机制】证书透明度(Certificate Transparency):如何防止恶意证书颁发?
Think Spatial 空间思维
IThttps网络协议http证书信任
证书透明度(CertificateTransparency,CT)的核心原理证书透明度(CT)是一项由Google主导的开放标准,旨在通过公开记录所有SSL/TLS证书的颁发行为,防止恶意CA错误或故意颁发虚假证书。其核心机制如下:1.CT的核心组件•日志服务器(LogServers):公开的、不可篡改的日志数据库,记录所有颁发的证书(包括域名、颁发者、有效期等)。•权威日志:由Google、Di
- laravel sqlserver扩展_laravel5使用freetds连接sql server的方法
凌晚晴
laravelsqlserver扩展
相关版本系统ubuntu16.04,使用的PHP版本是7.0.30,sqlserver2012,freetds为0.92Laravel5.5和5.4都测试过了什么是FreeTDS简单的说FreeTDS是一个程序库,可以实现在Linux系统下访问微软的SQL数据库!FreeTDS是一个开源的程序库,是TDS(表列数据流)协议的再次实现。它可以被用在Sybase的db-lib或者ct-lib库。它也包
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s