OpenVINO之四:转换TensorFlow模型

1

2 OpenVINO支持的TENSORFLOW模型

  • Inception v1 、 Inception v2、 Inception v3 、Inception V4 、 Inception ResNet v2
  • MobileNet v1 128、 MobileNet v1 160 、MobileNet v1 224
  • NasNet Large 、 NasNet Mobile
  • ResidualNet-50 、ResidualNet-101 、ResidualNet-152
  • VGG-16 、VGG-19

3 OpenVINO支持的TENSORFLOW层与其在Intermediate Representation (IR)中的对应关系

NUMBER OPERATION NAME IN TENSORFLOW LAYER NAME IN THE INTERMEDIATE REPRESENTATION
1 Transpose Permute
2 LRN Norm
3 Split Split
4 SplitV Split
5 FusedBatchNorm ScaleShift (can be fused into Convolution or FullyConnected)
6 Relu6 Clamp
7 DepthwiseConv2dNative Convolution
8 ExpandDims Constant propagation
9 Slice Split
10 ConcatV2 Concat
11 MatMul FullyConnected
12 Pack Reshapes and Concat
13 StridedSlice Constant propagation and several cases when StridedSlice can be expressed with Splits
14 Prod Constant propagation
15 Const Constant propagation
16 Tile Tile
17 Placeholder Input
18 Pad Fused into Convolution or Pooling layers (not supported as single operation)
19 Conv2D Convolution
20 Conv2DBackpropInput Deconvolution
21 Identity Ignored, does not appear in the IR
22 Add Eltwise(operation = sum)
23 Mul Eltwise(operation = mul)
24 Maximum
25 Rsqrt Power(power=-0.5)
26 Neg Power(scale=-1)
27 Sub Eltwise(operation = sum) + Power(scale=-1)
28 Relu ReLU
29 AvgPool Pooling (pool_method=avg)
30 MaxPool Pooling (pool_method=max)
31 Mean Pooling (pool_method = avg); spatial dimensions are supported only
32 RandomUniform Not supported
33 BiasAdd Fused or converted to ScaleShift
34 Reshape Reshape
35 Squeeze Reshape
36 Shape Constant propagation (or layer generation if the “–keep_shape_ops” command line parameter has been specified)
37 Softmax SoftMax
38 SpaceToBatchND Supported in a pattern when converted to Convolution layer dilation attribute, Constant propagation
39 BatchToSpaceND Supported in a pattern when converted to Convolution layer dilation attribute, Constant propagation
40 StopGradient
41 Square Constant propagation
42 Sum Pool(pool_method = avg) + Eltwise(operation = mul)
43 Range Constant propagation
44 CropAndResize ROIPooling (if the the method is ‘bilinear’)
45 ArgMax ArgMax
46 DepthToSpace Reshape + Permute + Reshape (works for CPU only because of 6D tensors)
47 ExtractImagePatches ReorgYolo
48 ResizeBilinear Interp
49 ResizeNearestNeighbor Resample
50 Unpack Split + Reshape (removes dimension being unpacked) if the number of parts is equal to size along given axis
51 AddN Several Eltwises
52 Concat Concat
53 Minimum Power(scale=-1) + Eltwise(operation = max) + Power(scale=-1)
54 Unsqueeze Reshape
55 RealDiv Power(power = -1) and Eltwise(operation = mul)
56 SquaredDifference Power(scale = -1) + Eltwise(operation = sum) + Power(power = 2)
57 Gather Gather
58 GatherV2 Gather
59 ResourceGather Gather
60 Sqrt Power(power=0.5)
61 Square Power(power=2)
62 Pad Pad
63 PadV2 Pad
64 MirrorPad Pad
65 ReverseSequence ReverseSequence
66 ZerosLike Constant propagation

参考资料:
1 Converting a TensorFlow* Model
2 Supported Framework Layers

你可能感兴趣的:(OpenVINO,tensorflow)