OpenVINO之五:转换ONNX模型

1

2 OpenVINO支持的ONNX模型

2-1 支持的公共模型

  • bvlc_alexnet , bvlc_googlenet , bvlc_reference_caffenet , bvlc_reference_rcnn_ilsvrc13
  • inception_v1, inception_v2
  • resnet50
  • squeezenet
  • densenet121
  • emotion_ferplus
  • mnist
  • shufflenet
  • VGG19
  • zfnet512

2-2 支持的Pytorch模型

Torchvision Models:

  • alexnet,
  • densenet121, densenet161, densenet169, densenet201,
  • resnet101, resnet152, resnet18, resnet34, resnet50,
  • vgg11, vgg13, vgg16, vgg19

Pretrained Models:

  • alexnet,
  • fbresnet152,
  • resnet101, resnet152, resnet18, resnet34, resnet152, resnet18, resnet34, resnet50, resnext101_32x4d, resnext101_64x4d,
  • vgg11

2-3 支持的PaddlePaddle模型

  • fit_a_line
  • recognize_digits
  • VGG16
  • ResNet
  • MobileNet
  • SE_ResNeXt
  • Inception-v4

3 OpenVINO支持的ONNX层与其在Intermediate Representation (IR)中的对应关系

NUMBER OPERATOR NAME IN ONNX* LAYER TYPE IN THE INTERMEDIATE REPRESENTATION
1 Add Eltwise(operation = sum) (added ‘axis’ support)
2 AveragePool Pooling (pool_method=avg)
3 BatchNormalization ScaleShift (can be fused into Convlution or FC)
4 Concat Concat
5 Constant Will be removed on constant propagation step
6 Conv Convolution
7 ConvTranspose Deconvolution (added auto_pad and output_shape attributes support))
8 Div Eltwise(operation = mul)->Power
9 Dropout Ignored, does not apeear in IR
10 Elu Activation (ELU)
11 Flatten Reshape
12 Gemm FullyConnected
13 GlobalAveragePool Pooling (pool_method=avg)
14 Identity Ignored, does not appear in IR
15 LRN Norm
16 LeakyRelu ReLU
17 MatMul FullyConnected
17 MaxPool Pooling (pool_method=max)
19 Mul Eltwise(operation = mul) (added ‘axis’ support)
20 Relu ReLU
21 Reshape Reshape
22 Shape Constant propagation
23 Softmax SoftMax
24 Squeeze Reshape
25 Sub Power->Eltwise(operation = sum)
26 Sum Eltwise(operation = sum)
27 Transpose Permute
28 Unsqueeze Reshape
29 Upsample Resample
30 ImageScaler ScaleShift
31 Affine ScaleShift
32 Reciprocal Power(power=-1)
33 Crop Split
34 Tanh Activation (operation = tanh)
35 Sigmoid Activation (operation = sigmoid)
36 Pow Power
37 ConvTranspose
38 Gather Constant propagation
39 Constant_fill Constant propagation
40 ReduceMean Reshape + Pooling(pool_method=avg) + Reshape
41 ReduceSum Reshape + Pooling(pool_method=avg) + Power(scale=reduce_dim_size) + Reshape
42 Gather Gather
43 Gemm GEMM
44 GlobalMaxPool Pooling (pool_method=max)
45 Neg Power(scale=-1)
46 Pad Pad
47 ArgMax ArgMax
48 Clip Clamp
49 DetectionOutput (experimental) DetectionOutputONNX
50 PriorBox (experimental) PriorBoxONNX
51 RNNSequence TensorIterator(RNNCell)
52 GRUSequence TensorIterator(GRUCell)
53 LSTMSequence TensorIterator(LSTMCell)

参考资料:
1 Converting a ONNX* Model
2 Supported Framework Layers

你可能感兴趣的:(OpenVINO)