- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 景联文科技:专业数据标注公司,推动AI技术革新
景联文科技
人工智能
数据标注作为AI技术发展的重要支撑,对于训练高质量的机器学习模型以及推动应用领域的创新具有不可替代的作用。景联文科技作为专业的数据标注公司,致力于提供专业的数据标注服务,帮助客户解决AI链条中的数据处理难题,共同推动人工智能技术的进步与发展。一站式数据标注服务景联文科技提供一站式的数据标注服务,涵盖从图像、视频、音频到文本等多种数据类型。•图像标注:对象检测、语义分割、关键点标注、多边形标注等。•
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 学习记录——语义分割和实例分割的标签结构
落叶击球
学习笔记学习人工智能
语义分割:一张样本,生成一张掩码图像标签。灰度图像,背景亮度为0,每个目标根据分类赋予不同亮度——1,2,3......实现像素级的类别区分,但无法区分个体。实例分割:原理:一张样本,生成一个多通道的Mat矩阵,也就是多张掩码图像叠在一起。每张掩码图负责存储一个类别的目标,亮度只有0和1,通过通道号区分每个类别。同时,每张掩码图内,每个目标拥有ID号(通过增加一个维度实现),负责区分一个类别中的每
- 语义分割训练精度计算
南太湖小蚂蚁
人工智能深度学习人工智能
语义分割训练的output结果一般是[batch_size,num_classes,width,height]这样的形式,而label的结果一般是[batch_size,width,height],类似如下形状,outputs:[4,6,480,320],而真值label:[4,480,320]。由于维度不同,无法直接比较,所以这两者要比较就要采取一点方法。output里面每个类型都有一个值,要取
- 语义分割笔记
Wils0nEdwards
笔记深度学习计算机视觉
在语义分割任务中,提升自制数据集上baselinemodel的平均交并比(mIoU)和平均精度(mAcc)的难度取决于多个因素。以下是一些关键因素及其对难度的影响:数据集质量:标注质量:高质量的标注对于训练有效的模型至关重要。如果标注存在错误或不一致,模型的性能会受到影响。样本数量:较大的数据集通常可以提升模型的泛化能力,但收集和标注大量样本是一个费时费力的过程。数据多样性:如果数据集包含多样化的
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- Atrous Spatial Pyramid Pooling(ASPP)空洞空间卷积池化金字塔
m0_55576290
深度学习人工智能
文章目录概要整体架构流程演化过程与代码实现概要ASPP主要用于解决语义分割任务中的尺度问题。在语义分割任务中,需要将图像中的每个像素分类到不同的类别中,而不同物体和结构在图像中可能有不同的尺度。传统的卷积神经网络在提取语义信息时,只能通过固定尺度的卷积核进行操作,因此无法很好地捕捉到不同尺度下的上下文信息。ASPP通过在网络中引入多个并行的分支,每个分支使用不同尺度的空洞卷积和池化操作,来捕获不同
- 深度学习,创新点,模型改进
揽星河@
计算机视觉机器学习深度学习python人工智能
深度学习添加创新点①在现有模型上添加自己的创新点②或者混合多个模型等等③提供创新点添加各种注意力机制,各种模型block。机器学习,目标检测,目标识别,语义分割,GAN,CNN等(只要是深度学习均可)编程语言限于Python,pytorch欢迎大家咨询~
- 【深度学习】COCO API源码解读
CS_Zero
深度学习人工智能
COCOAPI从C、cython,到PythonAPI:实现语义分割标注mask的解析,从具体实现cocoapi/common/maskApi.hcocoapi/common/maskApi.c到Cython封装实现pycocotools._maskcocoapi/PythonAPI/pycocotools/_mask.pyx#distutils:language=c#distutils:sour
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- 计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python
iuerfee
python
文章目录1前言1课题背景2技术原理和方法2.1基本原理2.2技术选型和方法3实例分割4实现效果5最后1前言优质竞赛项目系列,今天要分享的是深度学习人体语义分割在弹幕防遮挡上的应用该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:3分更多资料,项目分享:https://gitee.com/dancheng-senior/p
- [机器学习]详解transformer---小白篇
是安澜啊
深度学习神经网络
1.背景:Transformer是2017年的一篇论文《AttentionisAllYouNeed》提出的一种模型架构,这篇论文里只针对机器翻译这一种场景做了实验,并且由于encoder端是并行计算的,训练的时间被大大缩短了。全面击败了当时的SOTA,现阶段,Transformer在cv领域也是全面开花,基于transformer的目标识别,语义分割等算法也是经常屠榜。论文:[1706.03762
- 【深度学习每日小知识】全景分割
jcfszxc
深度学习术语表专栏深度学习人工智能
全景分割全景分割是一项计算机视觉任务,涉及将图像或视频分割成不同的对象及其各自的部分,并用相应的类别标记每个像素。与传统的语义分割相比,它是一种更全面的图像分割方法,传统的语义分割仅将图像划分为类别,而不考虑对象的部分。全景分割算法将语义分割和实例分割相结合,可以区分对象的一般类及其组成部分或实例。它们可以处理各种对象类,例如物体(例如天空、草地和道路)和事物(例如车辆、人和建筑物),并精确地分割
- 语义分割技术的简单总结
孤独患者_d589
几天前在公众号计算机视觉life上投稿了一篇文章,今天特此在这里mark一下,文章链接如下。https://mp.weixin.qq.com/s?__biz=MzIxOTczOTM4NA==&mid=2247488089&idx=1&sn=a7b18c154a84864521f2eb116585aee9&chksm=97d7f7cea0a07ed8da2a881efffc9a690c695b265
- 前向传播网络实现(类与函数)——TensorFlow2.4
SatVision炼金士
网络深度学习keras
文章目录前言一、基于类的前向传播二、基于函数的前向传播总结前言最近开始着手语义分割方面的内容,由于刚开始入门深度学习,看了一下deeplab的源码,里面所有网络结构基本上都是由类进行定义的(目的是为了方便复用),而大部分博主的复现代码基本上都是基于函数实现,作为小白的我一时有点蒙圈。为了更好地理解前向传播吧以及类与函数定义的网络结构,本文分别用类核函数实现了简单的前向传播函数提示:以下是本篇文章正
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 语义分割任务的准确率计算:基于PyTorch实现
高斯小哥
PyTorchpytorch人工智能pythonpycharm深度学习机器学习
语义分割任务的准确率计算:基于PyTorch实现文章目录引言语义分割任务概述准确率的定义与计算方法实践应用与优化策略准确率的局限性分析结尾引言随着深度学习技术的飞速发展,语义分割任务作为计算机视觉领域的一个重要分支,逐渐受到了广大研究者和开发者的关注。语义分割旨在将图像中的每个像素点划分到其所属的物体类别中,从而为图像赋予更为丰富的语义信息。准确率作为衡量语义分割模型性能的重要指标之一,其计算方式
- 【深度学习】: 脑部MRI图像分割
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例4:脑部MRI图像分割相关知识点:语义分割、医学图像处理(skimage,medpy)、可视化(matplotlib)1任务
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- SAM大模型遥感领域测评
未来GIS实验室
计算机视觉深度学习人工智能
1.引言随着OpenAI公司ChatGPT的火爆,国内外科技公司都陆续发布自然语言通用领域大模型。而图像领域AI,一时间没了热度。转机出现在上个月,Meta发布了分割万物的视觉通大模型SegmentAnythingModel(SAM)。关注图像或者遥感语义分割的同事可能知道,语义分割作为计算机视觉的核心任务,应用广泛,但最大的限制就是需要大量的标注数据,并且针对不同的任务需要重新训练或微调,试想,
- 实例分割模型解析:solo模型
交换喜悲
mdetection系列人工智能目标检测计算机视觉深度学习
论文链接:https://arxiv.org/abs/1912.04488代码:https://github.com/WXinlong/SOLO1.摘要我们提出了一种新的、极其简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使得实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“检测然后分段”策略(例如,MaskR-CNN),要么首先预测嵌入向量,然后使用聚
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 周报(20240204)
来自宇宙的曹先生
研究生阶段周报周报
日期:2024.1.29-2024.2.4本周工作:1.阅读论文本周主要对这篇文献进行了阅读:《用可学习的跳跃连接缩小U-Net中的语义差距:以医学图像分割为例》背景医学图像分割和随后对目标对象的定量评估为疾病诊断和治疗规划提供了有价值的信息。最近的语义分割方法通常依赖于类UNet的编码器-解码器架构,其中编码器产生高级语义特征,解码器逐渐对这些隐藏特征进行上采样,以产生具有每像素概率的分割图。大
- InstantID: Zero-shot Identity-Preserving Generation in Seconds
猛码Memmat
rob-agent/aigc图像生成深度学习计算机视觉
文章目录IntroductionMainReference记录由国内首创的一个好玩的小项目,图像生成领域的新进展。但我希望现阶段计算机视觉领域的研究能更聚焦在语义分割和三维视觉上,这样能更方便与机器人等产品和工业实体结合。IntroductionInstantID是一个基于扩散模型的图像生成解决方案,能实现从单一参考图像到多样化风格化写真的快速生成。用户只需上传一张自拍,20秒就能得到定制版AI写
- 基于YOLOv8的船舶目标检测系统(Python源码+Pyqt6界面+数据集)
AI小怪兽
深度学习实战应用案列108篇人工智能深度学习机器学习YOLO计算机视觉开发语言
博主简介AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;原创自研系列,2024年计算机视觉顶会创新点《YOLOv8原创自研》《YOLOv5原创自研》《YOLOv7原创自研》23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高《YOLOv8魔术师》《YOL
- CACDU-Net: A Novel DoubleU-Net BasedSemantic Segmentation Model for SkinLesions Detection in Image
我在努力学习分割(禁止说我水平差)
人工智能
CACDU-Net:一种新的基于双u-net的图像皮肤损伤语义分割模型摘要皮肤病变分割是皮肤病学领域的一项重要任务,它有助于早期发现和诊断皮肤病。深度学习技术在实现准确的病灶分割方面显示出巨大的潜力。在这些技术的帮助下,病灶分割过程可以自动化,从而减少了人工操作和主观判断的影响。这有助于节省医疗专业人员的时间和减少他们的工作量,从而提高他们的工作效率,并使医疗资源得到更好的分配。为了更好地进行皮肤
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,