https://blog.csdn.net/u010420283/article/details/80295270
:
ValueError: Variable model/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at: File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2005, in __init__ self._traceback = tf_stack.extract_stack() File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3616, in create_op op_def=op_def) File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper op_def=op_def) File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_state_ops.py", line 2023, in variable_v2 shared_name=shared_name, name=name) 解决方法
遇到这种报错,只要在代码开头加上:tf.reset_default_graph() #加入这句话,可以重新创建图,否则会报错 参考 https://blog.csdn.net/mr_brooks/article/details/80393396解决办法二 将with session 后面的代码,全部缩进到session的作用域内部
I am trying to run the conviz.py code posted on https://github.com/grishasergei/conviz. The code returns "RuntimeError: Attempted to use a closed Session
Note : I am using python 3.6 and TensorFlow 1.13.1.
I simply cloned the GitHub source and ran it with minor modifications. (e.g incompatibility issues in xrange and cross_entropy part)
Here is the part of the code that seems to be related to the error.
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print("\rIter " + str(step*batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc), end='')
step += 1
print("\rOptimization Finished!")
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:",
sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.}))
# no need for feed dictionary here
conv_weights = sess.run([tf.get_collection('conv_weights')])
print("conv_weights done!")
for i, c in enumerate(conv_weights[0]):
plot_conv_weights(c, 'conv{}'.format(i))
I expected conv_weights = sess.run([tf.get_collection('conv_weights')]) would load the weights tensor, but the code resulted in the following stack trace.
cell_name in async-def-wrapper()
/opt/conda/envs/Python36/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
927 try:
928 result = self._run(None, fetches, feed_dict, options_ptr,
--> 929 run_metadata_ptr)
930 if run_metadata:
931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/opt/conda/envs/Python36/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1073 # Check session.
1074 if self._closed:
-> 1075 raise RuntimeError('Attempted to use a closed Session.')
1076 if self.graph.version == 0:
1077 raise RuntimeError('The Session graph is empty. Add operations to the '
python tensorflow session runtime
shareeditfollow
Get updates on questions and answers
asked Oct 25 '19 at 2:17
转存失败重新上传取消
Daesung
1
In your print statement, you use the session outside the tf.Session context. – zihaozhihao Oct 25 '19 at 2:36
add a comment
ActiveOldestVotes
0
You should be to change code like below, sess object must be inside at "with tf.Session() as sess:":
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print("\rIter " + str(step*batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc), end='')
step += 1
print("\rOptimization Finished!")
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:",
sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.}))
# no need for feed dictionary here
conv_weights = sess.run([tf.get_collection('conv_weights')])
print("conv_weights done!")
for i, c in enumerate(conv_weights[0]):
plot_conv_weights(c, 'conv{}'.format(i))