MySQL的索引结构

索引是对数据库表 中一个或多个列的值进行排序的结构。与在表 中搜索所有的行相比,索引用指针 指向存储在表中指定列的数据值,然后根据指定的次序排列这些指针,有助于更快地获取信息。通常情 况下 ,只有当经常查询索引列中的数据时 ,才需要在表上创建索引。索引将占用磁盘空间,并且影响数 据更新的速度。但是在多数情况下 ,索引所带来的数据检索速度优势大大超过它的不足之处。

Mysql索引主要有两种结构:B+Tree索引和Hash索引.

1.Hash索引

MySQL中,只有Memory(Memory表只存在内存中,断电会消失,适用于临时表)存储引擎显示支持Hash索引是Memory表的默认索引类型,尽管Memory表也可以使用B+Tree索引。hsah索引把数据的索引以hash形式组织起来,因此当查找某一条记录的时候,速度非常快。当时因为是hash结构,每个键只对应一个值,而且是散列的方式分布。所以他并不支持范围查找和排序等功能。

2.B+树索引

参考:http://www.cnblogs.com/tgycoder/p/5410057.html

B+tree是mysql使用最频繁的一个索引数据结构,是Inodb和Myisam存储引擎模式的索引类型。相对Hash索引,B+树在查找单条记录的速度比不上Hash索引,但是因为

更适合排序等操作

,所以他更受用户的欢迎。毕竟不可能只对数据库进行单条记录的操作。

(1)带顺序访问指针的B+Tree

B+Tree所有索引数据都在叶子结点上,并且增加了顺序访问指针,每个叶子节点都有指向相邻叶子节点的指针。这样做是为了提高区间查询效率,例如查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

在数据库索引的应用中,B+树按照下列方式进行组织

① 叶结点的组织方式 。B+树的查找键 是数据文件的主键 ,且索引是稠密的。也就是说 ,叶结点 中为数据文件的第一个记录设有一个键、指针对 ,该数据文件可以按主键排序,也可以不按主键排序 ;数据文件按主键排序,且 B +树是稀疏索引 , 在叶结点中为数据文件的每一个块设有一个键、指针对 ;数据文件不按键属性排序 ,且该属性是 B +树 的查找键 , 叶结点中为数据文件里出现的每个属性K设有一个键 、 指针对 , 其中指针执行排序键值为 K的 记录中的第一个。

② 非叶结点 的组织方式。B+树 中的非叶结点形成 了叶结点上的一个多级稀疏索引。 每个非叶结点中至少有ceil( m/2 ) 个指针 , 至多有 m 个指针 。

B+树索引的插入和删除:

①在向数据库中插入新的数据时,同时也需要向数据库索引中插入相应的索引键值 ,则需要向 B+树 中插入新的键值。即上面我们提到的B-树插入算法。

②当从数据库中删除数据时,同时也需要从数据库索引中删除相应的索引键值 ,则需要从 B+树 中删 除该键值 。即B-树删除算法

(2)大大减少磁盘I/O读取

数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。


为什么要用B+树索引?

具体分析:

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。为什么使用B-/+Tree,还跟磁盘存取原理有关。

局部性原理与磁盘预读

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用。

程序运行期间所需要的数据通常比较集中。

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

数据库系统巧妙利用了磁盘预读原理将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B- Tree还需要使用如下技巧:

每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),h为深度,渐进复杂度为O(h)=O(logmN)。一般实际应用中,m是非常大的数字,通常超过100,因此h非常小(通常不超过3)。

综上所述,用B-Tree作为索引结构效率是非常高的。

你可能感兴趣的:(MySQL的索引结构)