spark读取mongodb数据

   spark2.x向mongodb中读取写入数据,读取写入相关参数参考https://docs.mongodb.com/spark-connector/current/configuration/#cache-configuration


从mongodb中读取数据时指定数据分区字段,分区大小提高读取效率, 当需要过滤部分数据集的情况下使用Dataset/SQL的方式filter,Mongo Connector会创建aggregation pipeline在mongodb端进行过滤,然后再传回给spark进行优化处理

val spark = SparkSession.builder
          .appName(this.getClass.getName().stripSuffix("$"))
          .getOrCreate()
val inputUri="mongodb://test:[email protected]:27017/test.articles"
val df = spark.read.format("com.mongodb.spark.sql").options(
             Map("spark.mongodb.input.uri" -> inputUri,
                 "spark.mongodb.input.partitioner" -> "MongoPaginateBySizePartitioner",
                 "spark.mongodb.input.partitionerOptions.partitionKey"  -> "_id",
                 "spark.mongodb.input.partitionerOptions.partitionSizeMB"-> "32"))
        .load()
val currentTimestamp = System.currentTimeMillis()
val originDf = df.filter(df("updateTime") < currentTimestamp && df("updateTime") >= currentTimestamp - 1440 * 60 * 1000)
                     .select("_id", "content", "imgTotalCount").toDF("id", "content", "imgnum")

向mongo里面写数据可以使用两种不同的方式mode=overwrite,append
overwirite 以覆盖的方式写入
append    以追加的方式写入

val outputUri="mongodb://test:[email protected]:27017/test.article_garbage" 
saveDF.write.options(Map("spark.mongodb.output.uri"-> outputUri))
          .mode("append")
          .format("com.mongodb.spark.sql")
          .save()

spark操作mongodb的scala-api文档:https://docs.mongodb.com/spark-connector/current/scala-api/

你可能感兴趣的:(spark,大数据eco)