poj 2002 正方形个数 (对点的hash 存储)

poj 2002 Squares

题意:

   给定N个点,求出这些点一共可以构成多少个正方形。

分析:

  若正方形为ABCD,A坐标为(x1, y1),B坐标为(x2, y2),则很容易可以推出C和D的坐标;
  对于特定的A和B坐标,C和D可以在线段AB的左边或者右边,即有两种情况;      
  因此只需要枚举点A和点B,然后计算出两种对应的C和D的坐标,判断是否存在即可; 
  这样计算完之后得到的答案是正确答案的4倍,因为正方形的4条边都枚举了,所以答案要右移两位。
 特别注意对hash的处理,这里用  平方求余法  标记散点值。

代码:

hash 做法:

const int N = 1010;
const int H = 10007;
int ptx[N], pty[N];

struct Node
{
    int x;
    int y;
    int next;
};
Node node[N];
int cur;
int n;
long ans;
int hashTable[H];

void initHash()
{
    for (int i = 0; i < H; ++i) hashTable[i] = -1;
    cur = 0;
    ans = 0;
}

void insertHash(int x, int y)
{
    int h = (x * x + y * y) % H;
    node[cur].x = x;
    node[cur].y = y;
    node[cur].next = hashTable[h];
    hashTable[h] = cur;
    ++cur;
}

bool searchHash(int x, int y)
{
    int h = (x * x + y * y) % H;
    int next;
    next = hashTable[h];
    while (next != -1)
    {
        if (x == node[next].x && y == node[next].y) return true;
        next = node[next].next;
    }
    return false;
}

int main()
{
    while (scanf("%d", &n) != EOF && n)
    {
        initHash();
        for (int i = 0; i < n; ++i) 
        {
            scanf("%d%d", &ptx[i], &pty[i]);
            insertHash(ptx[i], pty[i]);
        }
        for (int i = 0; i < n; ++i)
        {
            for (int j = i + 1; j < n; ++j)
            {
                int x1 = ptx[i] - (pty[i] - pty[j]);
                int y1 = pty[i] + (ptx[i] - ptx[j]);
                int x2 = ptx[j] - (pty[i] - pty[j]);
                int y2 = pty[j] + (ptx[i] - ptx[j]);
                if (searchHash(x1, y1) && searchHash(x2, y2)) ++ans;
            }
        }
        for (int i = 0; i < n; ++i)
        {
            for (int j = i + 1; j < n; ++j)
            {
                int x1 = ptx[i] + (pty[i] - pty[j]);
                int y1 = pty[i] - (ptx[i] - ptx[j]);
                int x2 = ptx[j] + (pty[i] - pty[j]);
                int y2 = pty[j] - (ptx[i] - ptx[j]);
                if (searchHash(x1, y1) && searchHash(x2, y2)) ++ans;
            }
        }
        ans >>= 2;
        printf("%ld\n", ans);
    }
    return 0;
}

二分做法:

#define N 1000  

struct Point {  
    int x;  
    int y;  
};  

struct Point point[N];  

int n;  /* 点的个数 */  

/* 由于点已经按照坐标排序过,所以采用二分查找 
 * 搜索点(x,y)是否存在,存在返回1,否则返回0 
 */  
int bsearch(int x, int y)  
{  
    int     m, s, t;  

    s = 0;  
    t = n-1;  
    while (s <= t) {  
        m = (s+t)/2;  
        if (point[m].x == x && point[m].y == y) return 1;  
        if (point[m].x > x || (point[m].x == x && point[m].y > y)) {  
            t = m-1;  
        }  
        else {  
            s = m+1;  
        }  
    }  
    return 0;  
}  

int main()  
{  
    int     x, y, i, j, count;  

    while (scanf("%d", &n), n) {  
        count = 0;  
        for (i = 0; i < n; i++) {  
            scanf("%d %d", &x, &y);  
            //插入法对点排序,按照x从小到大,y从小到大,且x优先排列的方式  
            for (j = i-1; j >= 0; j--) {  
                if (point[j].x > x || (point[j].x == x && point[j].y > y)) {  
                    point[j+1] = point[j];  
                } else {  
                    break;  
                }  
            }  
            point[j+1].x = x;  
            point[j+1].y = y;  
        }  
        /* 枚举所有边,对每条边的两个顶点可以 
         * 确定一个唯一的正方形,并求出另外两个顶点的坐标 
         */  
        for (i = 0; i < n; i++) {  
            for (j = (i+1); j < n; j++) {  
                //计算第三个点的坐标,搜索其是否存在  
                x = point[i].y-point[j].y+point[i].x;  
                y = point[j].x-point[i].x+point[i].y;  
                if (bsearch(x,y) == 0) {  
                    continue;  
                }  
                //计算第四个点的坐标,搜索其是否存在  
                x = point[i].y-point[j].y+point[j].x;  
                y = point[j].x-point[i].x+point[j].y;  
                if (bsearch(x, y)) {  
                    count++;  
                }  
            }  
        }  
        printf("%d\n", count/2);  
    }  
    return 0;  
}  

你可能感兴趣的:(ACM->计算几何)