动态规划专题小结:四边形不等式优化

今天第一次学习四边形不等式优化dp,感觉优化效果十分给力,不过数学味道比较浓重,证明比较复杂。因此这里删繁就简,给出关于四边形不等式优化必须要明白的地方,以后直接套用条件即可。

四边形不等式优化条件

在动态规划中,经常遇到形如下式的转台转移方程:

m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max)

上述的m(i,j)表示区间[i,j]上的某个最优值。w(i,j)表示在转移时需要额外付出的代价。该方程的时间复杂度为O(N^3)。


下面我们通过四边形不等式来优化上述方程,首先介绍什么是”区间包含的单调性“和”四边形不等式“

(1)区间包含的单调性:如果对于i≤i'

(2)四边形不等式:如果对于i≤i'

下面给出两个定理

定理一:如果上述的w函数同时满足区间包含单调性和四边形不等式性质,那么函数m也满足四边形不等式性质。


我们再定义s(i,j)表示m(i,j)取得最优值时对应的下标(即i≤k≤j时,k处的w值最大,则s(i,j)=k)。此时有如下定理

定理二:假如m(i,j)满足四边形不等式,那么s(i,j)单调,即s(i,j)≤s(i,j+1)≤s(i+1,j+1)。


好了,有了上述的两个定理后,我们发现如果w函数满足区间包含单调性和四边形不等式性质,那么有s(i,j-1)≤s(i,j)≤s(i+1,j)。即原来的状态转移方程可以改写为下式:

m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(s(i,j-1)≤k≤s(i+1,j))(min也可以改为max)

由于这个状态转移方程枚举的是区间长度L=j-i,而s(i,j-1)和s(i+1,j)的长度为L-1,是之间已经计算过的,可以直接调用。不仅如此,区间的长度最多有n个,对于固定的长度L,不同的状态也有n个,故时间复杂度为O(N^2),而原来的时间复杂度为O(N^3),实现了优化!今后只需要根据方程的形式以及w函数是否满足两条性质即可考虑使用四边形不等式来优化了。



你可能感兴趣的:(算法归纳与总结)