- Go与Python爬虫对比及模板实现
go语言和Python语言都可选作用来爬虫项目,因为python经过十几年的累积,各种库是应有尽有,学习也相对比较简单,相比GO起步较晚还是有很大优势的,么有对比就没有伤害,所以我利用一个下午,写个Go爬虫,虽说运行起来没啥问题,但是之间出错的概率太高了,没有完备的模版套用得走很多弯路,这就是为啥go没有python受欢迎的原因。为何Go爬虫远没有Python爬虫流行?1、历史生态差距Python
- spring-initializer
魔芋红茶
springspring学习python
spring-initializer能做什么从Spring官网下载并解压以生成springboot框架代码。存在的意义一般通过Idea从https://start.spring.io/下载框架代码,但很诡异的是,经常会出现浏览器可以访问,但Idea无法下载的问题,尝试通过curl等Linux命令行web客户端下载,依然有概率出现连接超时的问题。网上给出的解决方案是将Spring官网源替换为阿里源,
- 九章数学体系开源工程白皮书
《九章数学体系开源工程白皮书》前言:从公理冲突到场景适配的计算革命传统计算系统深陷“体系冲突陷阱”:阿基米德体系以“无穷可分”“绝对无穷不可达”为公理,适合描述开域,然而,99%以上的物理闭域场景(如星系边界、原子结构)是闭域。因“开域无穷假设”与“闭域有限性”的本质矛盾,必然产生类似芝诺悖论的逻辑错误——暗物质谜题、量子叠加态的概率描述、高维空间假设,本质上都是这种“公理-场景错配”的产物。如同
- windbg使用教程(调试异常及死锁等)
哈市雪花
调试windbgDMP异常死锁windows调试
1.背景最近由于线上的程序发生了死锁,而且重现的概率很低,正好客户反馈一个任务超时了,登上线上环境发现有一个“僵尸”进程,占用内存不波动,cpu仍在占用,那么用创建转储文件,用windbg调试吧。2.准备2.1.下载windbg需要下载Windows调试工具(WinDbg):Windows10SDK,安装时候根据需要,可以只安装DebuggingToolsForWindows,即windbg;如果
- 隐马尔可夫模型:语音识别系统的时序解码引擎
大千AI助手
人工智能Python#OTHER语音识别人工智能机器学习概率马尔科夫链HMM
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1HMM与语音识别的理论基础隐马尔可夫模型(HMM)作为一种双重随机过程的统计模型,其核心在于描述一个包含隐含状态的马尔可夫链,以及这些状态生成可观测输出的概率分布。在语音识别领域,HMM的时序建模能力与语音信号的特性形成了完美契合:隐含状态:对应语音
- 大模型中的temperature、topk、topn、repetition_penalty等参数原理
seetimee
大模型技术细节大模型
核心就在于采样策略,一图胜千言:上图中语言模型(languagemodel)的预测输出其实是字典中所有词的概率分布,而通常会选择生成其中概率最大的那个词。不过图中出现了一个采样策略(samplingstrategy),这意味着有时候我们可能并不想总是生成概率最大的那个词。设想一个人的行为如果总是严格遵守规律缺乏变化,容易让人觉得乏味;同样一个语言模型若总是按概率最大的生成词,那么就容易变成XX讲话
- MySQL 锁机制深度解析:从分类到实战优化
Edingbrugh.南空
运维mysql数据库
前言:锁的本质与意义在多并发场景下,数据库锁是协调多个进程/线程访问共享资源的核心机制。MySQL通过不同类型的锁实现数据一致性、隔离性和并发性的平衡。理解锁机制不仅能帮助开发者避免并发问题,还能优化系统性能。本文将从锁的分类、原理、实战场景到优化策略,全面解析MySQL锁机制。一、MySQL锁的多维分类1.按性能与策略分类乐观锁(OptimisticLock)假设并发冲突概率低,不主动加锁,而是
- ISO/IEC 27001 高阶架构 “规划” 之 风险评估
小木话安全
信息安全网络安全职场和发展学习方法
---写在前面的话---我们该讨论信息安全风险评估章节了,简称“风险评估”,我把它称为“拍脑袋”。不要误解,这里的“拍脑袋”是中性词,因为真正的风险评估不是个人行为,是组织行为并且风险评估的结果需要是客观的、需要加入定量的元素,比如风险数值&概率计算,威胁大小的数据分析等等一系列复杂的运算,最后得出风险数值。而企业内部的风险评估基本就两步:1、发现有问题;2、经验判断风险;3、证明风险是正确的。有
- 基于Java的蚁群算法深度解析与完整实现
一枚码农404
算法java算法蚁群算法强化学习优化算法java算法
基于Java的蚁群算法深度解析与完整实现本文深入剖析蚁群算法(ACO)的核心原理与实现细节,结合旅行商问题(TSP)场景,提供完整的Java代码实现及工程级优化方案。文章从蚂蚁觅食行为的信息素机制出发,详解路径选择概率模型、动态信息素更新策略及参数调优方法。通过面向对象设计构建蚁群算法核心类库,实现包括路径构建、轮盘赌选择、局部/全局信息素更新等关键算法模块,并给出参数动态调整、精英策略、并行化计
- Python实现蚁群算法
闲人编程
pythonpython算法开发语言蚁群
目录蚁群算法的基本原理蚁群算法的步骤Python实现蚁群算法解决TSP问题解释举例说明蚁群算法(AntColonyOptimization,ACO)是一种基于自然界蚂蚁觅食行为的仿生算法,最早由MarcoDorigo在1992年提出。它是一种用于解决组合优化问题的概率算法,特别适用于解决旅行商问题(TSP)、路径规划等问题。蚁群算法的基本原理蚂蚁在寻找食物的过程中会在路径上留下信息素(pherom
- 蚁群算法
佛渡红尘
计算机应用与算法算法c++数据结构
蚁群算法是一种用来寻找优化路径的概率型算法,由MarcoDorigo于1992年在他的博士论文中提出。这种算法模拟了蚂蚁觅食的原理,蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,从而指导自己的行动方向。它们总是朝着信息素强度高的方向移动,因此大量蚂蚁组成的集体觅食表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗
- 全网最详细的华为OD知识,值不值得去看这篇就够了(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为od华为OD机试2025B卷java
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年5月12日,华为官方已经将华为OD机试(A卷)切换为B卷。目前正在考的是B卷,按照华为OD往常的操作,B卷题目是由往
- 华为OD机试 - 模拟数据序列化传输(Java 2025 B卷 200分)
哪 吒
华为odjava开发语言华为OD机试2025B卷
华为OD机试2025B卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(A卷+E卷+B卷+C卷+D卷)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述模拟一套简化的序列化传输方式,请
- 深度解析生成式 AI:从技术原理到实战应用
LNL13
人工智能
一、生成式AI:重构数字内容生产范式(一)技术定义与核心价值生成式人工智能(GenerativeAI)是通过深度学习模型自动创造文本、图像、代码、视频等内容的技术体系,其核心在于从数据中学习概率分布并生成符合人类认知的输出。与传统判别式AI(如图像分类)不同,生成式AI实现了从"识别"到"创造"的跨越,典型应用包括:文本领域:ChatGPT对话系统、小说自动生成图像领域:MidJourney艺术创
- 强化学习:Deep Deterministic Policy Gradient (DDPG) 学习笔记
烨川南
强化学习学习笔记算法人工智能机器学习
一、DDPG是什么?1.1核心概念DDPG=Deep+Deterministic+PolicyGradientDeep:使用深度神经网络和类似DQN的技术(经验回放、目标网络)Deterministic:输出确定的动作(而不是概率分布)PolicyGradient:基于策略梯度的方法,优化策略以最大化累积奖励1.2算法特点特性说明连续动作空间直接输出连续动作值(如方向盘角度、机器人关节扭矩)离线学
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- 哈希指纹技术详解:从原理到应用
AI天才研究院
计算AI人工智能与大数据编程实践哈希算法算法
哈希指纹技术详解:从原理到应用文章目录哈希指纹技术详解:从原理到应用1.哈希指纹的本质核心原理2.通俗理解哈希指纹3.哈希指纹的实现方法3.1常用哈希算法3.2滚动哈希算法4."连续13字符重复"检测实现4.1问题分析与思维链4.2算法流程4.3代码实现5.哈希指纹技术的应用场景6.哈希指纹的数学模型6.1哈希函数的形式化定义6.2碰撞概率分析6.3局部敏感哈希(LSH)模型7.哈希指纹技术的优缺
- Python实例题:基于 Python 的简单天气查询应用
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于Python的简单天气查询应用要求:使用Python构建一个天气查询应用,支持以下功能:通过城市名称查询实时天气信息显示天气状况、温度、湿度、风速等基本信息支持多日天气预报查询显示天气趋势图表(温度变化、降水概率等)支持摄氏度/华氏度单位切换使用tkinter构建图形用户界面。调用公开天气API获取数据(如OpenWea
- 大语言模型应用指南:Gemini简介
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍自然语言处理(NLP)一直是人工智能领域的热门话题之一。在NLP中,语言模型是一个重要的概念,它可以用来预测下一个单词或字符的概率。近年来,随着深度学习技术的发展,大型语言模型的研究和应用也越来越受到关注。其中,Gemini是一种新型的大型语言模型,它在多项任务上取得了优异的表现。本文将介绍Gemini的核心概念、算法原理、数学模型和公式、项目实践、实际应用场景、工具和资源推荐、未来发
- 动手实践:如何提取Python代码中的字符串变量的值
大千AI助手
人工智能Python#DeepSeekpython开发语言人工智能deepseekAST
要提取Python代码中所有变量类型为字符串的变量的值,但不执行代码(避免安全风险),可以通过静态分析代码的抽象语法树(AST)来实现。以下是完整的解决方案:本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文章推荐:20.条件概率:不确定性决策的基石19.深度解读概率与证据权重-Probabil
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- 2025B卷华为OD机试(Python/JS/C/C++)真题【B卷+A卷+C卷+D卷+E卷】目录
哪 吒
搬砖工逆袭Java架构师华为od算法python2025B卷华为OD机试
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年5月12日,华为官方已经将华为OD机试(A卷)切换为B卷。目前正在考的是B卷,按照华为OD往常的操作,B卷题目是由往
- 【2025B卷】华为OD机试最新题库,按算法分类,高效刷题(持续更新)(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为od算法python2025B卷华为OD机试
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年5月12日,华为官方已经将华为OD机试(A卷)切换为B卷。目前正在考的是B卷,按照华为OD往常的操作,B卷题目是由往
- 2025B卷最新华为OD机考指南宝典(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为OD机试python2025B卷算法华为od
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年5月12日,华为官方已经将华为OD机试(A卷)切换为B卷。目前正在考的是B卷,按照华为OD往常的操作,B卷题目是由往
- 【持续更新】2025华为OD机试2025A卷机考真题库清单含考点说明(已更新600+题)(Python/JS/C/C++)
哪 吒
搬砖工逆袭Java架构师华为odpythonjavascript2025A卷华为OD机试
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2025年3月16日,华为OD机试已经将华为OD机试(E卷)切换为2025A卷。目前正在考的是2025A卷,按照华为OD往常的
- 大模型微调到底有没有技术含量?
DeepSeek-大模型系统教程
人工智能语言模型ai大模型大模型微调程序员AI大模型
今天给大家带来知乎好友@ybq的一篇回答-大模型微调到底有没有技术含量,或者说技术含量到底有多大?老生常谈的一句话吧:有没有技术含量取决于这个工作你怎么做,尤其是llm方向,上手门槛相比传统NLP变得更低了。我举一些例子吧,针对大模型微调的几个重要环节,我列举的每一种做法大概率都能完成最终目标,甚至说训出来的模型效果都没什么差别。但对个人能力成长的帮助就大不相同了。数据工作做法1:继承实验室或者同
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- 学习笔记(28):随机噪声的原理、作用及代码实现详解
宁儿数据安全
#机器学习学习笔记python
学习笔记(28):随机噪声的原理、作用及代码实现详解一、什么是随机噪声?为什么需要添加?在机器学习中,随机噪声是指数据中无法用特征解释的随机波动,通常符合某种概率分布(如正态分布)。在房价模拟中添加噪声的核心原因如下:1.模拟真实世界的不确定性真实房价除了受面积、房龄影响,还受装修情况、学区、交通、政策等未被建模的特征影响,这些因素的综合效应可抽象为“噪声”。示例:两套面积和房龄相同的房子,房价可
- CVPR2024 分割Segmentation相关论文37篇速览
木木阳
CVPR2024Segmentation分割论文
Paper1MFP:MakingFullUseofProbabilityMapsforInteractiveImageSegmentation摘要小结:最近的交互式分割算法中,将先前的概率图作为网络输入,以帮助当前分割轮次的预测。然而,尽管使用了先前的掩膜,概率图中包含的有用信息并没有很好地传播到当前预测中。在本文中,为了克服这一局限性,我们提出了一种新颖有效的基于点击的交互式图像分割算法MFP,
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin