- 【转】【译】How to Handle Very Long Sequences with LSTM(LSTM RNN 超长序列处理)
开始奋斗的胖子
机器学习RNNLSTM序列深度学习
原文地址http://machinelearningmastery.com/handle-long-sequences-long-short-term-memory-recurrent-neural-networks/一个长的输入序列却只对应一个或者一小段输出就是我们经常说的序列标注和序列分类。主要包括下面一些例子:包含上千个词的文件情感分类(NLP)包含上千个时间状态的脑电痕迹分类(Medici
- golang的编译过程分析
转载自:https://halfrost.com/go_command/引言Go语言这两年在语言排行榜上的上升势头非常猛,Go语言虽然是静态编译型语言,但是它却拥有脚本化的语法,支持多种编程范式(函数式和面向对象)。Go语言最最吸引人的地方可能是其原生支持并发编程(语言层面原生支持和通过第三方库支持是有很大区别的)。Go语言的对网络通信、并发和并行编程的支持度极高,从而可以更好地利用大量的分布式和
- 32、Swift 中的行为设计模式:命令与策略模式详解
win55
精通Swift2:从入门到实践Swift行为设计模式命令模式
Swift中的行为设计模式:命令与策略模式详解1.行为设计模式概述行为设计模式解释了对象之间如何相互交互,描述了不同对象如何相互发送消息以实现特定功能。常见的行为设计模式有以下九种:-责任链模式(Chainofresponsibility):用于处理各种请求,每个请求可能会委托给不同的处理程序。-命令模式(Command):创建可以封装操作或参数的对象,以便稍后或由不同组件调用。-迭代器模式(It
- 响应式编程入门教程第五节:Unity 生命周期与资源管理中的响应式编程
吉良吉影NeKoSuKi
unity游戏引擎c#开发语言架构
响应式编程入门教程第一节:揭秘UniRx核心-ReactiveProperty-让你的数据动起来!响应式编程入门教程第二节:构建ObservableProperty<T>—封装ReactiveProperty的高级用法响应式编程入门教程第三节:ReactiveCommand与UI交互响应式编程入门教程第四节:响应式集合与数据绑定响应式编程入门教程第五节:Unity生命周期与资源管理中的响应式编程在
- 响应式编程入门教程第一节:揭秘 UniRx 核心 - ReactiveProperty - 让你的数据动起来!
吉良吉影NeKoSuKi
开发语言unityc#游戏引擎
响应式编程入门教程第一节:揭秘UniRx核心-ReactiveProperty-让你的数据动起来!-CSDN博客响应式编程入门教程第二节:构建ObservableProperty<T>—封装ReactiveProperty的高级用法-CSDN博客响应式编程入门教程第三节:ReactiveCommand与UI交互响应式编程入门教程第四节:响应式集合与数据绑定响应式编程入门教程第五节:Unity生命周
- 响应式编程入门教程第三节:ReactiveCommand 与 UI 交互
吉良吉影NeKoSuKi
ui交互unity游戏引擎架构c#开发语言
响应式编程入门教程第一节:揭秘UniRx核心-ReactiveProperty-让你的数据动起来!响应式编程入门教程第二节:构建ObservableProperty<T>—封装ReactiveProperty的高级用法响应式编程入门教程第三节:ReactiveCommand与UI交互响应式编程入门教程第四节:响应式集合与数据绑定响应式编程入门教程第五节:Unity生命周期与资源管理中的响应式编程在
- abp 上如何使用getstoredproccommand_如何使用Chainlink VRF在以太坊上生成随机数
何堤森
abp
随机数和区块链一直很难达到“一致”(译者注:区块链要求确定性,而随机数正相反)。到目前为止,区块链上还没有可验证的随机函数。原因是:交易被旷工出块后,需要网络上的多个节点来确认才算真实有效。就要求每个节点验证时都必须得出相同的结果。如果函数是随机的(每次运行的结果不一样),则每个节点将得出不同的结果,从而导致交易得不到确认。有一些解决(变通)方法[1]可以生成一些伪随机生成[2],但到目前为止,已
- KAIST:LLM混合递归推理
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:Mixture-of-Recursions:LearningDynamicRecursiveDepthsforAdaptiveToken-LevelComputation来源:arXiv,2507.10524摘要缩放语言模型解锁了令人印象深刻的能力,但伴随的计算和内存需求使训练和部署都很昂贵。现有的效率工作通常针对参数共享或自适应计算,留下了如何同时实现两者的问题。我们引入了混合递归(MoR
- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- Python机器学习教程
Python机器学习教程(MachineLearningwithPythonTutorial)PDFVersionQuickGuideResourcesJobSearchDiscussionPDF版本快速指南资源资源求职讨论区MachineLearning(ML)isbasicallythatfieldofcomputersciencewiththehelpofwhichcomputersyste
- MacOS没有管理员账号的解决办法
Devid
重启电脑,启动时按住command+s,进入单一用户模式输入mount-uw/,然后回车输入rm/var/db/.AppleSetupDone,然后回车输入reboot,然后回车,电脑就会重启了重启后系统会默认为此时没有账号,会指引一步步创建一个账号,按照步骤创建一个管理员账号即可。
- python基础语法9,用os库实现系统操作并用sys库实现文件操作(简单易上手的python语法教学)
AI 嗯啦
python开发语言
一、os库os.system()是Pythonos库中用于执行操作系统命令的重要方法,它允许在Python程序中直接调用系统shell命令(如Linux的bash命令或Windows的cmd命令)。基本语法importosos.system(command)command:要执行的系统命令字符串(与在终端/命令提示符中输入的命令格式一致)返回值:命令执行的退出状态码(0表示成功,非0表示执行出错)
- 在git中同时配置gitcode和github访问权限
第一步:安装Git1、下载GitforWindows:https://git-scm.com/download/win2、按默认选项安装(重要步骤):选择UseGitfromthecommandlineand…(将Git加入PATH)选择CheckoutWindows-style,commitUnix-stylelineendings终端选择UseMinTTY第二步:配置全局用户信息打开GitBa
- ReactiveCocoa 学习笔记七(RACCommand)
那夜的星空分外清澈
ReactiveCocoaReactiveCocoa
RACCommandRACCommand关键的两个方法如下,理解了他们便能理解RACCommand的作用。-(instancetype)initWithEnabled:(nullableRACSignal*)enabledSignalsignalBlock:(RACSignal*(^)(InputType_Nullableinput))signalBlock;-(RACSignal*)execut
- 响应式编程入门教程第四节:响应式集合与数据绑定
吉良吉影NeKoSuKi
unity游戏引擎c#开发语言架构
响应式编程入门教程第一节:揭秘UniRx核心-ReactiveProperty-让你的数据动起来!响应式编程入门教程第二节:构建ObservableProperty<T>—封装ReactiveProperty的高级用法响应式编程入门教程第三节:ReactiveCommand与UI交互响应式编程入门教程第四节:响应式集合与数据绑定响应式编程入门教程第五节:Unity生命周期与资源管理中的响应式编程在
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- 边缘智能革命:嵌入式机器学习如何让万物“思考”
万能小贤哥
机器学习人工智能
当智能手表精准识别你的健身动作,工业传感器预测设备故障于毫秒之间,农业传感器自动调节灌溉水量——这些并非科幻场景,而是嵌入式机器学习(EmbeddedMachineLearning,或TinyML)正在悄然重塑的现实。这场发生在设备边缘的智能革命,正将AI从云端的数据中心拉近到我们指尖的每一台设备中。一、嵌入式机器学习:定义与核心价值嵌入式机器学习是指在资源极端受限的微控制器(MCU)、微处理器(
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 《How to Take Smart Notes》读书笔记1
LY320
最近在读一本书,题为《HowtoTakeSmartNotes:OneSimpleTechniquetoBoostWriting,LearningandThinking–forStudents,AcademicsandNonfictionBookWriters》1。尚未读完,分享一些读这本书的感想,我的一些心得,和不解。这本书让我觉得最有收获的点是更新了我对记录和整理笔记的认识。通常我们在记录笔记时
- 2021-03-22 每日打卡
来多喜
昨日完成情况:1.完成了3k跑,太久没锻炼体力跟不上,没力气做帕梅拉了。2.MathematicsforMachineLearning:LinearAlgebra学完了week3和week4,week5还剩大概一个小时学完,没有开始做思维导图。早上跑步回来后看《你是我的城池堡垒》看了两个小时,虽然一边看一边洗碗,洗完碗一边看一边吃饭,但是从三点多才开始学习。重要的事情要先做!3.没有时间做Pyth
- Opencv学习_2 (opencv结构&显示图像)
opencv结构:1:主要包含:cxcorecvmachinelearninghighguicvcamcvaux2:cxcore:基础结构:CvPoint,CvSize,CvScalar等数组结构:cvCreateImage,cvCreateMat等动态结构:CvMemStorage,CvMemBlock等绘图函数:cvLine,cvRectangle等数据保存和运行时类型信息:CvFileSto
- git 入门
格林姆大师
git入门学习笔记----3个入门命令:gitinit、gitadd、gitcommit-v学习场景(首次在github上创建newrepository):…orcreateanewrepositoryonthecommandlineecho"#blog-02">>README.mdgitinitgitaddREADME.mdgitcommit-m"firstcommit"gitremoteadd
- Conda 核心命令快速查阅表
拉拉拉拉拉拉拉马
conda
本表旨在提供一个简洁、高效的Conda命令参考,专注于最常用功能的快速查找。1.环境管理(EnvironmentManagement)功能(Function)命令(Command)示例(Example)创建新环境condacreate-n[packages...]condacreate-nmyenvpython=3.9pandas激活环境condaactivatecondaactivatemyen
- mac装springboot_安装 Spring Boot CLI
2401DEM
mac装springboot
SpringBootCLI(CommandLineInterface)是一个命令行工具,可用于快速搭建基于Spring的原型。它支持运行Groovy脚本,这也就意味着你可以使用类似Java的语法,但不用写很多的模板代码。SpringBoot不一定非要配合CLI使用,但它绝对是让Spring应用进入状态的最快方式。手动安装你可以从Spring的软件仓库中下载SpringCLI分发包:一旦你下载完成后
- #Datawhale组队学习#7月-强化学习Task1
fzyz123
Datawhale组队学习强化学习人工智能AI
这里是Datawhale组织的组队学习《强化学习入门202507》,Datawhale是一个开源的社区。第一章绪论1.1为什么要学习强化学习?强化学习(ReinforcementLearning,RL)是机器学习中专注于智能体(Agent)如何通过与环境交互学习最优决策策略的分支。与监督学习依赖静态数据集、无监督学习聚焦数据内在结构不同,强化学习的核心在于序贯决策:智能体通过试错探索环境,根据行动
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- docker安装node部分问题
自律的蜗牛
docker容器node.js
sudonlatestsudo:n:commandnotfound如果运行sudonlatest时出现:sudo:n:commandnotfound说明n版本管理工具未安装或未添加到PATH环境变量。解决方案1️⃣先检查n是否已安装运行:whichn或者:command-vn如果有输出/usr/local/bin/n,说明n已安装,但可能需要sudo访问。如果没有任何输出,说明n没有安装,跳到方法
- Mac自定义右键功能
东东旭huster
macos
mac右键相对于Windows来说功能少很多,市场里也有一些好用的拓展软件,比如赤友,但是用一段时间又要收费了,作为一个白嫖党当然是自己做了。打开自动操作这个应用选择快速操作打开,再从实用工具中选择运行shell脚本这里我们添加一个用vscode打开的功能有几个点需要注意下1、工作流程选择文件或文件夹2、位于访达3、传递输入选择作为自变量编辑好后可以点运行试下,没问题command+S保存一下。在
- 深入了解 Vim 编辑器:从入门到精通
誰能久伴不乏
编辑器vimlinux
文章目录深入了解Vim编辑器:从入门到精通一、Vim的三个基本模式1.普通模式(NormalMode)2.插入模式(InsertMode)3.命令模式(CommandMode)二、常用快捷键光标移动删除操作复制和粘贴撤销和重做三、文件操作与搜索文件操作搜索文本替换文本四、Vim的进阶功能多文件编辑分屏功能标签页查看帮助五、总结深入了解Vim编辑器:从入门到精通Vim是一个强大的文本编辑器,广泛应用
- .Net程序集强签名详解
强签名:1.可以将强签名的dll注册到GAC,不同的应用程序可以共享同一dll。2.强签名的库,或者应用程序只能引用强签名的dll,不能引用未强签名的dll,但是未强签名的dll可以引用强签名的dll。3.强签名无法保护源代码,强签名的dll是可以被反编译的。4.强签名的dll可以防止第三方恶意篡改。强签名的方法:1.有源代码:1.1使用vstoolcommand:snk–kmykey.snk生成
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文