聊聊kafka 0.8 ConsumerFetcherManager的MaxLag指标

本文主要研究一下kafka0.8.2.2版本中ConsumerFetcherManager的MaxLag指标的统计。

问题

使用jmx查询出来的MaxLag跟使用ConsumerOffsetChecker查出来的总是不一样,几乎是jmx查出来的是0,但是实际是存在lag的。这里探究一下这个MaxLag的计算。

AbstractFetcherManager

kafka_2.10-0.8.2.2-sources.jar!/kafka/server/AbstractFetcherManager.scala

abstract class AbstractFetcherManager(protected val name: String, clientId: String, numFetchers: Int = 1)
  extends Logging with KafkaMetricsGroup {
  // map of (source broker_id, fetcher_id per source broker) => fetcher
  private val fetcherThreadMap = new mutable.HashMap[BrokerAndFetcherId, AbstractFetcherThread]
  private val mapLock = new Object
  this.logIdent = "[" + name + "] "

  newGauge(
    "MaxLag",
    new Gauge[Long] {
      // current max lag across all fetchers/topics/partitions
      def value = fetcherThreadMap.foldLeft(0L)((curMaxAll, fetcherThreadMapEntry) => {
        fetcherThreadMapEntry._2.fetcherLagStats.stats.foldLeft(0L)((curMaxThread, fetcherLagStatsEntry) => {
          curMaxThread.max(fetcherLagStatsEntry._2.lag)
        }).max(curMaxAll)
      })
    },
    Map("clientId" -> clientId)
  )

}  

具体newGauge是调用KafkaMetricsGroup的方法

重点看这个计算逻辑,所有的数据都在fetcherThreadMap里头,key是BrokerAndFetcherId,value是AbstractFetcherThread,具体实例的类是ConsumerFetcherThread,它继承了AbstractFetcherThread

AbstractFetcherThread.fetcherLagStats

AbstractFetcherThread里头有个重要的字段,就是fetcherLagStats。

class FetcherLagStats(metricId: ClientIdAndBroker) {
  private val valueFactory = (k: ClientIdTopicPartition) => new FetcherLagMetrics(k)
  val stats = new Pool[ClientIdTopicPartition, FetcherLagMetrics](Some(valueFactory))

  def getFetcherLagStats(topic: String, partitionId: Int): FetcherLagMetrics = {
    stats.getAndMaybePut(new ClientIdTopicPartition(metricId.clientId, topic, partitionId))
  }
}

AbstractFetcherThread#FetcherLagMetrics

class FetcherLagMetrics(metricId: ClientIdTopicPartition) extends KafkaMetricsGroup {
  private[this] val lagVal = new AtomicLong(-1L)
  newGauge("ConsumerLag",
    new Gauge[Long] {
      def value = lagVal.get
    },
    Map("clientId" -> metricId.clientId,
      "topic" -> metricId.topic,
      "partition" -> metricId.partitionId.toString)
  )

  def lag_=(newLag: Long) {
    lagVal.set(newLag)
  }

  def lag = lagVal.get
}

lag值的更新

lag值的更新在AbstractFetcherThread#processFetchRequest

private def processFetchRequest(fetchRequest: FetchRequest) {
    val partitionsWithError = new mutable.HashSet[TopicAndPartition]
    var response: FetchResponse = null
    try {
      trace("Issuing to broker %d of fetch request %s".format(sourceBroker.id, fetchRequest))
      response = simpleConsumer.fetch(fetchRequest)
    } catch {
      case t: Throwable =>
        if (isRunning.get) {
          warn("Error in fetch %s. Possible cause: %s".format(fetchRequest, t.toString))
          partitionMapLock synchronized {
            partitionsWithError ++= partitionMap.keys
          }
        }
    }
    fetcherStats.requestRate.mark()

    if (response != null) {
      // process fetched data
      inLock(partitionMapLock) {
        response.data.foreach {
          case(topicAndPartition, partitionData) =>
            val (topic, partitionId) = topicAndPartition.asTuple
            val currentOffset = partitionMap.get(topicAndPartition)
            // we append to the log if the current offset is defined and it is the same as the offset requested during fetch
            if (currentOffset.isDefined && fetchRequest.requestInfo(topicAndPartition).offset == currentOffset.get) {
              partitionData.error match {
                case ErrorMapping.NoError =>
                  try {
                    val messages = partitionData.messages.asInstanceOf[ByteBufferMessageSet]
                    val validBytes = messages.validBytes
                    val newOffset = messages.shallowIterator.toSeq.lastOption match {
                      case Some(m: MessageAndOffset) => m.nextOffset
                      case None => currentOffset.get
                    }
                    partitionMap.put(topicAndPartition, newOffset)
                    fetcherLagStats.getFetcherLagStats(topic, partitionId).lag = partitionData.hw - newOffset
                    fetcherStats.byteRate.mark(validBytes)
                    // Once we hand off the partition data to the subclass, we can't mess with it any more in this thread
                    processPartitionData(topicAndPartition, currentOffset.get, partitionData)
                  } catch {
                    case ime: InvalidMessageException =>
                      // we log the error and continue. This ensures two things
                      // 1. If there is a corrupt message in a topic partition, it does not bring the fetcher thread down and cause other topic partition to also lag
                      // 2. If the message is corrupt due to a transient state in the log (truncation, partial writes can cause this), we simply continue and
                      //    should get fixed in the subsequent fetches
                      logger.error("Found invalid messages during fetch for partition [" + topic + "," + partitionId + "] offset " + currentOffset.get + " error " + ime.getMessage)
                    case e: Throwable =>
                      throw new KafkaException("error processing data for partition [%s,%d] offset %d"
                                               .format(topic, partitionId, currentOffset.get), e)
                  }
                case ErrorMapping.OffsetOutOfRangeCode =>
                  try {
                    val newOffset = handleOffsetOutOfRange(topicAndPartition)
                    partitionMap.put(topicAndPartition, newOffset)
                    error("Current offset %d for partition [%s,%d] out of range; reset offset to %d"
                      .format(currentOffset.get, topic, partitionId, newOffset))
                  } catch {
                    case e: Throwable =>
                      error("Error getting offset for partition [%s,%d] to broker %d".format(topic, partitionId, sourceBroker.id), e)
                      partitionsWithError += topicAndPartition
                  }
                case _ =>
                  if (isRunning.get) {
                    error("Error for partition [%s,%d] to broker %d:%s".format(topic, partitionId, sourceBroker.id,
                      ErrorMapping.exceptionFor(partitionData.error).getClass))
                    partitionsWithError += topicAndPartition
                  }
              }
            }
        }
      }
    }

    if(partitionsWithError.size > 0) {
      debug("handling partitions with error for %s".format(partitionsWithError))
      handlePartitionsWithErrors(partitionsWithError)
    }
  }

fetcherLagStats.getFetcherLagStats(topic, partitionId).lag = partitionData.hw - newOffset
这个是在AbstractFetcherThread#doWork方法里头

AbstractFetcherThread#doWork

abstract class AbstractFetcherThread(name: String, clientId: String, sourceBroker: Broker, socketTimeout: Int, socketBufferSize: Int,
                                     fetchSize: Int, fetcherBrokerId: Int = -1, maxWait: Int = 0, minBytes: Int = 1,
                                     isInterruptible: Boolean = true)
  extends ShutdownableThread(name, isInterruptible) {

  //...
  override def doWork() {
    inLock(partitionMapLock) {
      if (partitionMap.isEmpty)
        partitionMapCond.await(200L, TimeUnit.MILLISECONDS)
      partitionMap.foreach {
        case((topicAndPartition, offset)) =>
          fetchRequestBuilder.addFetch(topicAndPartition.topic, topicAndPartition.partition,
                           offset, fetchSize)
      }
    }

    val fetchRequest = fetchRequestBuilder.build()
    if (!fetchRequest.requestInfo.isEmpty)
      processFetchRequest(fetchRequest)
  }
}  

ShutdownableThread#run

abstract class ShutdownableThread(val name: String, val isInterruptible: Boolean = true)
        extends Thread(name) with Logging {
   //...
  def doWork(): Unit

  override def run(): Unit = {
    info("Starting ")
    try{
      while(isRunning.get()){
        doWork()
      }
    } catch{
      case e: Throwable =>
        if(isRunning.get())
          error("Error due to ", e)
    }
    shutdownLatch.countDown()
    info("Stopped ")
  }
}        

ConsumerOffsetChecker

kafka_2.10-0.8.2.2-sources.jar!/kafka/tools/ConsumerOffsetChecker.scala

object ConsumerOffsetChecker extends Logging {

  private val consumerMap: mutable.Map[Int, Option[SimpleConsumer]] = mutable.Map()
  private val offsetMap: mutable.Map[TopicAndPartition, Long] = mutable.Map()
  private var topicPidMap: immutable.Map[String, Seq[Int]] = immutable.Map()

  //...
  private def processPartition(zkClient: ZkClient,
                               group: String, topic: String, pid: Int) {
    val topicPartition = TopicAndPartition(topic, pid)
    val offsetOpt = offsetMap.get(topicPartition)
    val groupDirs = new ZKGroupTopicDirs(group, topic)
    val owner = ZkUtils.readDataMaybeNull(zkClient, groupDirs.consumerOwnerDir + "/%s".format(pid))._1
    ZkUtils.getLeaderForPartition(zkClient, topic, pid) match {
      case Some(bid) =>
        val consumerOpt = consumerMap.getOrElseUpdate(bid, getConsumer(zkClient, bid))
        consumerOpt match {
          case Some(consumer) =>
            val topicAndPartition = TopicAndPartition(topic, pid)
            val request =
              OffsetRequest(immutable.Map(topicAndPartition -> PartitionOffsetRequestInfo(OffsetRequest.LatestTime, 1)))
            val logSize = consumer.getOffsetsBefore(request).partitionErrorAndOffsets(topicAndPartition).offsets.head

            val lagString = offsetOpt.map(o => if (o == -1) "unknown" else (logSize - o).toString)
            println("%-15s %-30s %-3s %-15s %-15s %-15s %s".format(group, topic, pid, offsetOpt.getOrElse("unknown"), logSize, lagString.getOrElse("unknown"),
                                                                   owner match {case Some(ownerStr) => ownerStr case None => "none"}))
          case None => // ignore
        }
      case None =>
        println("No broker for partition %s - %s".format(topic, pid))
    }
  }
}  

主要是这个processPartition进行获取lag的逻辑

里头依赖的offsetMap获取逻辑如下

      zkClient = new ZkClient(zkConnect, 30000, 30000, ZKStringSerializer)

      val topicList = topics match {
        case Some(x) => x.split(",").view.toList
        case None => ZkUtils.getChildren(zkClient, groupDirs.consumerGroupDir +  "/owners").toList
      }

      topicPidMap = immutable.Map(ZkUtils.getPartitionsForTopics(zkClient, topicList).toSeq:_*)
      val topicPartitions = topicPidMap.flatMap { case(topic, partitionSeq) => partitionSeq.map(TopicAndPartition(topic, _)) }.toSeq
      val channel = ClientUtils.channelToOffsetManager(group, zkClient, channelSocketTimeoutMs, channelRetryBackoffMs)

      debug("Sending offset fetch request to coordinator %s:%d.".format(channel.host, channel.port))
      channel.send(OffsetFetchRequest(group, topicPartitions))
      val offsetFetchResponse = OffsetFetchResponse.readFrom(channel.receive().buffer)
      debug("Received offset fetch response %s.".format(offsetFetchResponse))

      offsetFetchResponse.requestInfo.foreach { case (topicAndPartition, offsetAndMetadata) =>
        if (offsetAndMetadata == OffsetMetadataAndError.NoOffset) {
          val topicDirs = new ZKGroupTopicDirs(group, topicAndPartition.topic)
          // this group may not have migrated off zookeeper for offsets storage (we don't expose the dual-commit option in this tool
          // (meaning the lag may be off until all the consumers in the group have the same setting for offsets storage)
          try {
            val offset = ZkUtils.readData(zkClient, topicDirs.consumerOffsetDir + "/%d".format(topicAndPartition.partition))._1.toLong
            offsetMap.put(topicAndPartition, offset)
          } catch {
            case z: ZkNoNodeException =>
              if(ZkUtils.pathExists(zkClient,topicDirs.consumerOffsetDir))
                offsetMap.put(topicAndPartition,-1)
              else
                throw z
          }
        }
        else if (offsetAndMetadata.error == ErrorMapping.NoError)
          offsetMap.put(topicAndPartition, offsetAndMetadata.offset)
        else {
          println("Could not fetch offset for %s due to %s.".format(topicAndPartition, ErrorMapping.exceptionFor(offsetAndMetadata.error)))
        }
      }

大体的逻辑就是

  • 构造OffsetFetchRequest,获取consumer在topic的每个partition的消费的offset信息
  • 构造OffsetRequest,获取topic的每个partition的logSize
  • logSize - consumer的offset = lag

小结

HighWaterMark

问题可能就在这个HighWaterMark:

  • ConsumerFetcherManager使用HighWaterMark - newOffset
  • ConsumerOffsetChecker调用SimpleConsumer的getOffsetsBefore,获取的是leaderEndOffset,即leaderEndOffset - newOffset

HighWaterMark取的是partition对应的ISR中最小的LEO,消费者最多只能消费到HW所在的位置
毫无疑问使用leader的offset肯定比使用HighWaterMark的数据要大,这样在replica延迟大的时候,表现更为明显

但是实际情况,即使消费端故意模拟耗时消费处理,也不见得这个数据变大,几乎总是0,因此问题还不是这个HighWaterMark

messages.lastOption

最后调试了一次,进入AbstractFetcherThread里头,看到这段数据的真实值,才恍然大悟

val newOffset = messages.shallowIterator.toSeq.lastOption match {
                      case Some(m: MessageAndOffset) => m.nextOffset
                      case None => currentOffset.get
                    }

原来这里统计的是fetcher拉取的最新数据的offset与partition的HighWaterMark的差值,而拉取回来是放到一个内存队列里头让业务消费线程去消费的;它衡量的fetcher拉取的速度,而不是消费者消费的速度,要看消费者与生产者的lag值,就得使用ConsumerOffsetChecker去检查。

看来还真的不能望文生义,被坑了一天

doc

  • Kafka数据可靠性与一致性解析
  • AbstractFetcherThread
  • ConsumerFetcherManager MaxLag

你可能感兴趣的:(聊聊kafka 0.8 ConsumerFetcherManager的MaxLag指标)