Scrapy实战篇(一)之爬取链家网成交房源数据(下)

在上一小节中,我们已经提取到了房源的具体信息,这一节中,我们主要是对提取到的数据进行后续的处理,以及进行相关的设置。

数据处理

我们这里以把数据存储到mongo数据库为例。
编写pipelines.py文件

import pymongo


class MongoPipeline(object):

    collection = 'lianjia_house'  #数据库collection名称

    def __init__(self, mongo_uri, mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    @classmethod
    def from_crawler(cls,crawler):
        return cls(
            mongo_uri = crawler.settings.get('MONGO_URI'),
            mongo_db = crawler.settings.get('MONGO_DB')
        )
    def open_spider(self,spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]

    def close(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        table = self.db[self.collection]
        data = dict(item)
        table.insert_one(data)
        return item

非常简单的几步,就实现了将数据保存到mongo数据库中,所以说mongo数据库还是非常好用的。
由于之前的学习篇中已经学习过数据的存储相关的内容,在这里就不多赘述。

设置随机User-Agent

这个内容在之前的学习篇中也已经学习过了,这里就直接拿过来用。
编写middlewares.py文件。

import scrapy
import random
from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware


class MyUserAgentMiddleware(UserAgentMiddleware):

    def __init__(self, agents):
        self.agents = agents

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            agents=crawler.settings.get('USER_AGENTS')
        )

    def process_request(self, request, spider):
        agent = random.choice(self.agents)
        request.headers['User-Agent'] = agent

设置(settings)

最后一步就是在settings.py文件中,进行我们的设置和应用我们的相关的组件。
内容如下:

BOT_NAME = 'lianjia'

SPIDER_MODULES = ['lianjia.spiders']
NEWSPIDER_MODULE = 'lianjia.spiders'

ROBOTSTXT_OBEY = False

USER_AGENTS = [
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
    "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
    "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)",
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
    "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
    "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
    "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
    "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5",
    "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
    "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)",
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
    "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
    "Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:2.0b13pre) Gecko/20110307 Firefox/4.0b13pre",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:16.0) Gecko/20100101 Firefox/16.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
    "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    ]

MONGO_URI = 'mongodb://localhost:27017'
MONGO_DB = "lianjia"

DOWNLOAD_DELAY = 2

DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3',
    'Connection':'keep-alive'
}

DOWNLOADER_MIDDLEWARES = {
    'lianjia.middlewares.MyUserAgentMiddleware': 400,
}

ITEM_PIPELINES = {
   'lianjia.pipelines.MongoPipeline': 300,
}

总结

由于我们爬取得数据量比较大,请求比较多,如果你直接运行的话,肯定是很快就会被封掉的,你可以选择设置ip代理,具体的设置方法你可以参照scrapy学习篇里面的设置ip代理,这里就不多演示,当然了,如果你想看一下效果的话,你可以选择只爬取某一个区的数据,比如鼓楼区。其效果如下面所示。


Scrapy实战篇(一)之爬取链家网成交房源数据(下)_第1张图片

另外,你可以在你的项目根目录下创建一个run.py文件,里面添加如下的内容:

from scrapy import cmdline
cmdline.execute("scrapy crawl lianjia".split())

其中,lianjia是你spider里面定义的名字,这样,你只需要使用python run.py就可以运行这个项目了。

这里提醒一下,如果你不是着急获取这个数据的话,可以将设置里面的下载延迟设置的稍微大一些,一方面防止我们爬虫被办,另一方面以减轻对方服务器的压力。

github地址: https://github.com/cnkai/lianjia.git

声明:本文仅供学习交流之用。

你可能感兴趣的:(Scrapy实战篇(一)之爬取链家网成交房源数据(下))