数据结构——逆波兰式

很久没有关注算法和数据结构,大部分知识都已经忘记了;是时间好好回炉一下了,说实话干读数据机构这本书还是挺枯燥而且这本书原理性比较多,有一定的难度。这不刚看到逆波兰式废了好大劲才搞懂,老了。。。

逆波兰式

逆波兰式(Reverse Polish notation,RPN,或逆波兰记法),也叫后缀表达式(将运算符写在操作数之后)

一个 表达式E的后缀形式可以如下定义:
(1)如果E是一个变量或 常量,则E的 后缀式是E本身。
(2)如果E是E1 op E2形式的表达式,这里op是如何二元操作符,则E的后缀式为E1'E2' op,这里E1'和E2'分别为E1和E2的后缀式。
(3)如果E是(E1)形式的表达式,则E1的后缀式就是E的后缀式。
如:我们平时写a+b,这是 中缀表达式,写成 后缀表达式就是:ab+
(a+b)*c-(a+b)/e的后缀表达式为:
(a+b)*c-(a+b)/e
→((a+b)*c)((a+b)/e)-
→((a+b)c*)((a+b)e/)-
→(ab+c*)(ab+e/)-
→ab+c*ab+e/-

算法实现

将一个普通的中序 表达式转换为 逆波兰表达式的一般算法是:
首先需要分配2个栈,一个作为临时存储运算符的栈S1(含一个结束符号),一个作为输入逆波兰式的栈S2(空栈),S1栈可先放入优先级最低的运算符#,注意,中缀式应以此最低优先级的运算符结束。可指定其他字符,不一定非#不可。从中缀式的左端开始取字符,逐序进行如下步骤:
(1)若取出的字符是 操作数,则分析出完整的运算数,该操作数直接送入S2栈
(2)若取出的字符是 运算符,则将该运算符与S1栈栈顶元素比较,如果该 运算符优先级(不包括括号运算符)大于S1栈栈顶运算符优先级,则将该运算符进S1栈,否则,将S1栈的栈顶运算符弹出,送入S2栈中,直至S1栈栈顶运算符低于(不包括等于)该运算符优先级,最后将该运算符送入S1栈。
(3)若取出的字符是“(”,则直接送入S1栈顶。
(4)若取出的字符是“)”,则将距离S1栈栈顶最近的“(”之间的运算符,逐个 出栈,依次送入S2栈,此时抛弃“(”。
(5)重复上面的1~4步,直至处理完所有的输入字符
(6)若取出的字符是“#”,则将S1栈内所有运算符(不包括“#”),逐个出栈,依次送入S2栈。
完成以上步骤,S2栈便为逆波兰式输出结果。不过S2应做一下逆序处理。便可以按照逆波兰式的计算方法计算了!
 

代码程序

//'1 + 2 * 3 + (4 * 5 + 6) * 7'

function ReversePolish() {
  this.operatorStack = [];
  // this.operator = ['+', '-', '*', '/', '(', ')'];
  this.operator = {
    '+': 1,
    '-': 1,
    '*': 2,
    '/': 2,
    '(': 10,
    ')': 10
  };
  this.rp = [];
}

ReversePolish.prototype.convert = function(str) {
  debugger;
  // ('15 + 2 * 3 + (4 * 5 + 6) * 7').trim().replace(/\s+/g, '').split(/([\+|\-|\*|\/|\(|\)])/)
  // ["15", "+", "2", "*", "3", "+", "", "(", "4", "*", "5", "+", "6", ")", "", "*", "7"]
  str
  .trim()
  .replace(/\s+/g, '')
  .split(/([\+|\-|\*|\/|\(|\)])/)
  .filter(e => !!e)
  .forEach(e => {
    if (/[0-9]/g.test(e)) { // 数字直接放入逆波兰式数组
      this.rp.push(e);
    } else {
      if (this.operatorStack.length === 0) {// 操作符栈为空直接压入栈
        this.operatorStack.push(e);
      } else {
        if (e === '(') { // 左括号直接入栈
          this.operatorStack.push(e);
        } else if (e === ')') { // 右括号弹出所有的操作符进入逆波兰数组,直至遇到 (, (不进入逆波兰数组
          let op = this.operatorStack.pop();
          while(op !== '(') {
            this.rp.push(op);
            op = this.operatorStack.pop();
          }
          // this.operatorStack.pop();
        } else { // 遇到其他操作符则弹出所有栈顶元素,直至遇到优先级更低的操作符,但是不处理(
          let op = this.operatorStack.pop();
          while(op && this.operator[op] >= this.operator[e] && op !== '(') {
            this.rp.push(op);
            op = this.operatorStack.pop();
          }
          if (op) {
            this.operatorStack.push(op);
          }
          this.operatorStack.push(e);
        }
      }
    }
  });
  // 运行结束后将所有的操作符栈弹出
  let op = this.operatorStack.pop();
  while(op) {
    this.rp.push(op);
    op = this.operatorStack.pop();
  }

  console.log(this.rp.join(' '));
};

//15 2 3 * + 4 5 * 6 + 7 * +
ReversePolish.prototype.eval = function(){
  let numberStack = [];
  this.rp.forEach(e => {
    if (/[0-9]/g.test(e)) {
      numberStack.push(Number(e));
    } else if (this.operator[e]) {
      let n2 = numberStack.pop();
      let n1 = numberStack.pop();
      switch(e) {
        case '+':
          numberStack.push(n1 + n2);
          break;
        case '-':
          numberStack.push(n1 - n2);
          break;
        case '*':
          numberStack.push(n1 * n2);
          break;
        case '/':
          numberStack.push(n1 / n2);
      }
    }
  });
  return numberStack.pop();
}

let rp = new ReversePolish();
rp.convert('15 + 2 * 3 + (4 * 5 + 6) * 7');
rp.eval();

  感觉逆波兰式不仅是一种方法,更是一种思想,逆波兰式这种计算方法没有必要知道任何运算符优先规则。就像我们实际业务中有很多逻辑判断、各种优先级的场景,是否也可以使用逆波兰式的思想来解决?上面的例子也是比较简单的情况,没有考虑运算符的执行顺序,对于2^2^3这个种,实际是等于2^8等于256,而不是4^3=64.

 

你可能感兴趣的:(数据结构——逆波兰式)