- 什么是神经网络
jerryjee
神经网络与深度学习神经网络深度学习机器学习人工智能python
概述简而言之,神经网络就是函数:输入数据,输出结果。函数我们以MNIST手写数字图像识别为例,来定义一下对应的函数形式:任务类型:图像分类输入:一张图像包含28x28=784个像素,每个像素用一个实数表示输出:0-9任务描述:从图像张识别出唯一的数字函数定义y=f(x1,x2,...,x784)y=f(x_1,x_2,...,x_{784})y=f(x1,x2,...,x784)xi∈R,i=1,
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- elasticsearch8 linux版以服务的方式启动
zhangzeyuaaa
elasticsearchLinuxlinux运维服务器
1.创建系统服务文件对于使用systemd作为系统初始化系统的Linux发行版(如CentOS7及以上、Ubuntu16.04及以上),需要创建一个systemd服务文件。以root用户或具有sudo权限的用户身份执行以下操作:sudovim/etc/systemd/system/elasticsearch.service在打开的文件中输入以下内容:[Unit]Description=Elasti
- 智能巡检机器人在电力行业的应用
zxsz_com_cn
智能巡检系统人工智能网络数据库
一、引言在电力行业中,保障电力设备的安全稳定运行至关重要。传统的人工巡检方式存在劳动强度大、效率低、容易出现漏检和误判等问题。随着科技的发展,智能巡检机器人应运而生,并在电力行业中得到了广泛而深入的应用,为电力系统的可靠运行提供了有力保障。二、智能巡检机器人在电力行业的应用场景(一)变电站巡检设备外观检查智能巡检机器人配备高清摄像头和图像识别技术,能够对变电站内的变压器、断路器、隔离开关、互感器等
- YOLOv11 火焰识别:智能时代的火灾预警新利器
星际编程喵
Python探索之旅YOLOpython目标检测机器学习人工智能开发语言
前言随着人工智能(AI)在各个领域如火如荼发展,图像识别技术也跟着飞速进步。从最初的传统算法到如今的深度学习模型,图像识别在准确性和效率上提升令人惊叹。而在这场技术革命中,YOLO(YouOnlyLookOnce)系列模型无疑扮演举足轻重的角色。今天,我们将目光聚焦在最新的版本——YOLOv11。别误会,YOLOv11可不是什么随便升级。它远不止数字上多了个“1”那么简单。YOLOv11集成许多先
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- 《DeepSeek Janus Pro 7B:多模态人工智能大模型部署全攻略》
空云风语
神经网络人工智能深度学习人工智能
《DeepSeekJanusPro7B:多模态人工智能大模型部署全攻略》引言:开启多模态AI新世界在科技飞速发展的当下,多模态AI已成为人工智能领域中最耀眼的明星,正以前所未有的速度改变着我们的生活与工作方式。从智能语音助手到图像识别系统,从自动驾驶汽车到智能医疗诊断,多模态AI的身影无处不在,它让机器能够理解和处理多种类型的信息,如文本、图像、音频等,从而实现更加智能、高效的交互。DeepSee
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 使用爬虫获取按图搜索1688商品(拍立淘)案例指南
数据小小爬虫
爬虫图搜索算法算法
在电商领域,按图搜索功能(如1688的“拍立淘”)为用户提供了更直观、便捷的购物体验。通过上传图片,用户可以快速找到与图片相似的商品。本文将详细介绍如何利用爬虫技术实现按图搜索1688商品,并获取其详情数据。一、技术背景按图搜索功能通常依赖于图像识别技术和搜索引擎。1688的“拍立淘”功能允许用户上传图片,系统会通过图像识别技术找到与上传图片相似的商品。通过爬虫技术,我们可以模拟这一过程,获取搜索
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 瑞熙贝通|智能实验教学管理平台建设方案
瑞熙贝通实验室综合管理平台
实验室综合管理系统平台建设人工智能大数据物联网
一、建设理念和方法:以本科基础医学实验室建设为标准,以“服务学生和社会”为指导思想,以虚实一体化建设为基础,融实验教学、开放创业和服务社会等功能于一体,借助互联网,在负一楼室外建设废液、废气和生物制品的处理平台,在虚拟仿真室建设局域网和数据采集中心,以“物联网”模式贯穿始终,运用射频识别、传感识别、图像识别、互联互通等技术,完成实验室运行管控、设备使用申请、设备耗材管控、样品样本检测、检测数据提取
- 《解锁AI芯片新境界:提升专用人工智能芯片通用性与灵活性的热点技术》
程序猿阿伟
人工智能
在人工智能飞速发展的当下,专用人工智能芯片虽在特定任务上表现出色,但提升其通用性和灵活性已成为行业关键课题。以下是一些相关的热点技术。可重构架构技术可重构架构允许芯片在运行时根据不同任务需求动态改变自身的硬件结构和功能。如现场可编程门阵列(FPGA),内部有大量可配置逻辑单元和布线资源,用户能通过编程实现不同的逻辑功能,可针对不同的人工智能算法和应用场景快速重构,像在图像识别和自然语言处理任务间灵
- 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
图像识别深度学习
一、介绍动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟','云豹','变色龙','壁虎','狞猫','狮子','猎豹','美洲狮','美洲虎','老虎','蜥蜴','
- AI大模型开发必读书籍从入门到精通:三本关键的AI大模型书籍推荐
程序员辣条
人工智能大模型入门大模型大模型教程大模型学习学习AI大模型
近年来,人工智能(AI)迅速崛起,成为科技领域最为炙手可热的话题之一。AI的高效性不仅大幅提升了各行各业的生产力,还在许多领域中创造了前所未有的创新机会。尤其是AI大模型的开发,更是引领了科技发展的新趋势。随着大模型在自然语言处理、图像识别、自动化决策等方面展现出强大的能力,越来越多的企业和研究机构将其视为未来发展的核心技术。对于程序员来说,这是一个前所未有的契机,不仅可以通过掌握大模型开发的技能
- 【蝴蝶识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+图像识别+算法模型
图像识别人工智能深度学习
一、介绍蝴蝶识别系统,本系统使用Python作为主要开发语言,通过收集了20种蝴蝶图片数据集('001.黑三线凤蝶','002.褐脉三线凤蝶','003.黄斑翠凤蝶','004.暗脉翠凤蝶','005.密斑翠凤蝶','006.青凤蝶','007.绿带青凤蝶','008.玉带青凤蝶','009.柑橘凤蝶','010.长尾翠凤蝶','011.绿尾翠凤蝶','012.红纹凤蝶','013.黄凤蝶','0
- 基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
一、介绍蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)","毒鹅膏菌(Amanita)","牛肝菌(Boletus)","网状菌(Cortinarius)","毒镰孢(Entoloma)","湿孢菌(Hygrocybe)","乳菇(Lactarius)","红菇(Russula)","
- DeepSeek发布开源多模态大模型Janus-Pro-7B!本地部署+Colab部署!支持图像识别和图像生成!基准测试得分超越OpenAI的DALL·E 3 + Stable Diffusion
AI超元域
stablediffusion人工智能AI编程aiAI作画AIGC
本篇笔记所对应的视频:https://www.bilibili.com/video/BV18DFpeMEps/Janus-Pro-7B是由DeepSeek开发的多模态AI模型,它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本,还可以处理图像等其他模态的信息。模型主要特点:统一的架构:Janus-Pro采用单一transformer架构来处理文本和图像信息,实现了真正的多模态理解和生成
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- 从零开始:用Python手写神经网络
WHCIS
python神经网络开发语言人工智能深度学习算法
在当今的人工智能领域,神经网络已经成为解决复杂问题的核心技术之一。从图像识别到自然语言处理,再到强化学习,神经网络的身影无处不在。然而,对于许多初学者来说,神经网络似乎是一个神秘而复杂的黑盒子。本文将带你用基础的Python代码构建一个简单的神经网络,揭开它的神秘面纱,让你真正理解神经网络的工作原理。一、神经网络的基本原理在深入了解代码之前,我们需要先回顾一下神经网络的基本原理。神经网络是由大量的
- 2025最新主流深度学习算法全解析
lucky_syq
AI深度学习算法人工智能
深度学习:开启智能时代的钥匙在当今数字化时代,深度学习无疑是人工智能领域中最为耀眼的明星。它如同一把神奇的钥匙,开启了智能时代的大门,让计算机从简单的数据处理迈向了复杂的智能决策。深度学习通过构建具有多个层次的神经网络模型,使计算机能够自动从大量数据中学习到复杂的模式和特征,从而实现对数据的分类、预测、生成等任务。从语音助手到自动驾驶,从图像识别到自然语言处理,深度学习的应用无处不在,深刻地改变着
- 了解深度神经网络模型(Deep Neural Networks, DNN)
huaqianzkh
未来技术dnn人工智能神经网络
深度神经网络模型(DeepNeuralNetworks,DNN)深度神经网络模型是一种包含多个隐藏层的神经网络,能够通过多层次的非线性变换从数据中提取复杂特征,广泛应用于图像识别、自然语言处理等领域。基本结构输入层:接收原始数据。隐藏层:包含多个层,每层有多个神经元,通过非线性激活函数处理数据。输出层:生成最终预测或分类结果。主要特点多层次结构:通过多个隐藏层逐步提取高层次特征。非线性变换:使用激
- 神经网络(Neural Network)
ningmengjing_
神经网络深度学习人工智能
引言神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测分析等任务中表现出色。神经网络的基本构建单元是神经元,每个神经元接收多个输入信号,通过加权求和并应用激活函数来生成输出。通过将这些神经元分层组织,
- 2024年常用的物体识别API
程序员
随着人工智能技术的迅猛发展,物体识别类型API在各个领域得到了广泛应用。2024年,随着智能设备的普及和物联网技术的成熟,常用的物体识别API将扮演着越来越重要的角色。从宠物图像识别到食物营养识别,这些API服务不仅让我们的生活更加便捷智能,也为各行各业带来了更多的可能性。让我们一起探索未来2024年常用的物体识别API,看看它们将如何改变我们的生活和工作。什么是物体识别API接口?物体识别API
- 深度学习入门:搭建你的第一个神经网络
Evaporator Core
人工智能深度学习Python开发经验深度学习python神经网络
在当今数字化时代,深度学习正以前所未有的速度改变着我们的生活。从语音助手到自动驾驶汽车,从图像识别到自然语言处理,深度学习的应用无处不在。而Python作为一门简洁而强大的编程语言,成为了深度学习领域最受欢迎的工具之一。今天,我们将一起踏上深度学习的旅程,搭建你的第一个神经网络。一、深度学习的魅力深度学习是机器学习的一个分支,它通过模拟人脑的神经网络结构,让计算机能够自动从大量数据中学习规律和特征
- 通过硅基流动网站调用 DeepSeek API 的详细步骤指南
wen02809
人工智能
随着人工智能技术的快速发展,越来越多的开发者开始关注如何利用强大的AI工具来提升自己的项目或应用。DeepSeek作为一家专注于AI技术的公司,提供了丰富的API接口,涵盖了自然语言处理、图像识别、数据分析等多个领域。而硅基流动作为一个开放的技术平台,为开发者提供了便捷的方式来调用这些API。本文将详细介绍如何通过硅基流动网站免费调用DeepSeek的API,并提供一些实用的技巧和注意事项。一、为
- 一切皆是映射:量子机器学习与传统元学习的融合
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的瓶颈当前,人工智能(AI)取得了令人瞩目的进步,尤其是在图像识别、自然语言处理等领域。然而,AI仍然面临着一些瓶颈,例如:数据依赖性:AI模型通常需要大量的训练数据才能达到良好的性能,而获取和标注这些数据往往成本高昂。泛化能力:AI模型在面对未见过的数据时,泛化能力往往不足,容易出现过拟合等问题。可解释性:AI模型的决策过程往往难以解释,这限制了其在一些关键领域的应用。
- RKMPP依赖硬件单元
沐风_ZTL
视频编解码RKMPPVPURGA
rkmpp(RockchipMediaProcessPlatform)主要依赖瑞芯微(Rockchip)芯片中的VPU(VideoProcessUnit,视频处理单元)和RGA(RasterGraphicAccelerationUnit,2D图形加速单元)实现硬件加速功能。以下是具体分析:1.VPU(视频处理单元)VPU是瑞芯微芯片中专门负责视频编解码的硬件模块。通过rkmpp,开发者可以调用VP
- Vision Transformer学习笔记(2020 ICLR)
刘若里
论文阅读学习笔记网络计算机视觉transformer
摘要(Abstract):简述了ViT(VisionTransformer)模型的设计和实验结果,展示了其在大规模图像数据集上进行训练时的优越性能。该模型直接采用原始图像块作为输入,而不是传统的卷积神经网络(CNNs),并通过Transformer架构处理这些图像块以实现高效的图像识别。引言(Introduction):强调了传统卷积神经网络在图像识别领域的主导地位及其局限性,尤其是随着数据集规模
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo