传送门
emm在雅礼集训的时候听到的一道题 上来就觉得是插头dp 最后果然是轮廓线状压233
我们简化一下题意。 有一个n*m的网格,每个格子是空地或障碍物,询问把每一个空地看成障碍物的情况下,用1*2的骨牌覆盖(可以留有空地)的方案数 对1e9+7取模 bzoj和洛咕题面都挂了233
我们发现留有空地就很烦,所以我们可以把空地看成1*1的骨牌,这样的话我们统计的方案数就是用1*1的骨牌和1*2的骨牌完全覆盖网格的方案数。
骨牌覆盖! ——》轮廓线状压!
但是我们发现如果对于每个格子直接计算的话 时间复杂度是O(n^3*2^m) 根本无法承受
所以我们考虑另一种做法 我们可以选择对前后缀进行合并这样的话复杂度就降到了O(n^2*2^m)
我们考虑如何对前后缀进行合并 即什么样的两条轮廓线是合法的
对应红色的格子作为我们的合并的格子的话 首先要求它上下两个格子已经被覆盖过了 然后就是上下对应的蓝绿格子应该状态相同 这样才能竖着填满棋盘(我们现在只考虑竖着因为横向的覆盖是在轮廓线dp的时候已经讨论过了)
所以我们对前后分别进行一次轮廓线dp(讨论横着放1*2竖着放1*2放1*1和不放) 然后最后统计答案的时候进行合并即可
附代码。(哦对bzoj卡空间只能开到1<<17不过也够了233)
#include
#include
#include
#include
#define inf 20021225
#define ll long long
#define mdn 1000000007
using namespace std;
int f[18][18][1<<17],g[18][18][1<<17];
int bit[18],n,m,top;
int mp[18][18];
void add(int &x,int y){x=(x+y)%mdn;}
void work()
{
//int top=(1<n) continue;
for(int st=0;st<=top;st++)
if(f[i][j][st])
{
int tmp=f[i][j][st];
if((st&bit[j])==0&&mp[i][j]) continue;
if((st&bit[j])==0)
{
add(f[x][y][st|bit[j]],tmp);
continue;
}
if(mp[i][j]) add(f[x][y][st],tmp);
else
{
add(f[x][y][st],tmp);
add(f[x][y][st^bit[j]],tmp);
if(j>1&&(st&bit[j-1])==0) add(f[x][y][st|bit[j-1]],tmp);
}
}
}
g[n][m][top]=1;
for(int i=n;i;i--)
for(int j=m;j;j--)
{
int x=i,y=j-1;
if(j==1) x=i-1,y=m;
if(x<1) continue;
for(int st=0;st<=top;st++)
if(g[i][j][st])
{
int tmp=g[i][j][st];
if((st&bit[j])==0&&mp[i][j]) continue;
//printf("%d %d %d %d\n",i,j,st,g[i][j][st]);
if((st&bit[j])==0)
{
add(g[x][y][st|bit[j]],tmp);
continue;
}
if(mp[i][j]) add(g[x][y][st],tmp);
else
{
add(g[x][y][st],tmp);
add(g[x][y][st^bit[j]],tmp);
if(j