Prim算法
1.概览
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
2.算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面对算法的图例描述
3.简单证明prim算法
反证法:假设prim生成的不是最小生成树
1).设prim生成的树为G0
2).假设存在Gmin使得cost(Gmin)
3).将加入G0中可得一个环,且不是该环的最长边(这是因为∈Gmin)
4).这与prim每次生成最短边矛盾
5).故假设不成立,命题得证.
4.算法代码实现(未检验)
#define MAX 100000 #define VNUM 10+1 //这里没有ID为0的点,so id号范围1~10 int edge[VNUM][VNUM]={/*输入的邻接矩阵*/}; int lowcost[VNUM]={0}; //记录Vnew中每个点到V中邻接点的最短边 int addvnew[VNUM]; //标记某点是否加入Vnew int adjecent[VNUM]={0}; //记录V中与Vnew最邻近的点 void prim(int start) { int sumweight=0; int i,j,k=0; for(i=1;i//顶点是从1开始 { lowcost[i]=edge[start][i]; addvnew[i]=-1; //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外 } addvnew[start]=0; //将起始点start加入Vnew adjecent[start]=start; for(i=1;i 1;i++) { int min=MAX; int v=-1; for(j=1;j ) { if(addvnew[j]!=-1&&lowcost[j] //在Vnew之外寻找最短路径 { min=lowcost[j]; v=j; } } if(v!=-1) { printf("%d %d %d\n",adjecent[v],v,lowcost[v]); addvnew[v]=0; //将v加Vnew中 sumweight+=lowcost[v]; //计算路径长度之和 for(j=1;j ) { if(addvnew[j]==-1&&edge[v][j]<lowcost[j]) { lowcost[j]=edge[v][j]; //此时v点加入Vnew 需要更新lowcost adjecent[j]=v; } } } } printf("the minmum weight is %d",sumweight); }
5.时间复杂度
这里记顶点数v,边数e
邻接矩阵:O(v2) 邻接表:O(elog2v)
Kruskal算法
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
2.算法简单描述
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中
if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
添加这条边到图Graphnew中
图例描述:
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
3.简单证明Kruskal算法
对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。
归纳基础:
n=1,显然能够找到最小生成树。
归纳过程:
假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。
我们证明T'+{}是G的最小生成树。
用反证法,如果T'+{}不是最小生成树,最小生成树是T,即W(T)
由数学归纳法,Kruskal算法得证。
4.代码算法实现
typedef struct { char vertex[VertexNum]; //顶点表 int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表 int n,e; //图中当前的顶点数和边数 }MGraph; typedef struct node { int u; //边的起始顶点 int v; //边的终止顶点 int w; //边的权值 }Edge; void kruskal(MGraph G) { int i,j,u1,v1,sn1,sn2,k; int vset[VertexNum]; //辅助数组,判定两个顶点是否连通 int E[EdgeNum]; //存放所有的边 k=0; //E数组的下标从0开始 for (i=0;i) { for (j=0;j ) { if (G.edges[i][j]!=0 && G.edges[i][j]!=INF) { E[k].u=i; E[k].v=j; E[k].w=G.edges[i][j]; k++; } } } heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列 for (i=0;i //初始化辅助数组 { vset[i]=i; } k=1; //生成的边数,最后要刚好为总边数 j=0; //E中的下标 while (k<G.n) { sn1=vset[E[j].u]; sn2=vset[E[j].v]; //得到两顶点属于的集合编号 if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树 { printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w); k++; for (i=0;i ) { if (vset[i]==sn2) { vset[i]=sn1; } } } j++; } }
时间复杂度:elog2e e为图中的边数