表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。
人工检测是产品表面缺陷的传统检测方法,该方法抽检率低、准确性不高、实时性差、效率低、劳动强度大、受人工经验和主观因素的影响大,而基于机器视觉的检测方法可以很大程度上克服上述弊端。
机器视觉技术是一种无接触、无损伤的自动检测技术,是实现设备自动化、智能化和精密控制的有效手段,具有安全可靠、光谱响应范围宽、可在恶劣环境下长时间工作和生产效率高等突出优点。机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表面图像,利用相应的图像处理算法提取图像的特征信息,然后根据特征信息进行表面缺陷的定位、识别、分级等判别和统计、存储、查询等操作;
机器视觉表面缺陷检测系统基本组成
主要包括图像获取模块、图像处理模块、图像分析模块、数据管理及人机接口模块。
图像获取模块由工业相机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表面图像的采集。在光源的照明下,通过光学镜头将产品表面成像于相机传感器上,光信号先转换成电信号,进而转换成计算机能处理的数字信号。目前工业用相机主要基于CCD或CMOS(complementary metal oxide semiconductor)芯片的相机。CCD是目前机器视觉最为常用的图像传感器。
机器视觉光源直接影响到图像的质量,其作用是克服环境光干扰,保证图像的稳定性,获得对比度尽可能高的图像。目前常用的光源有卤素灯、荧光灯和发光二级管(LED)。LED光源以体积小、功耗低、响应速度快、发光单色性好、可靠性高、光均匀稳定、易集成等优点获得了广泛的应用。
由光源构成的照明系统按其照射方法可分为明场照明与暗场照明、结构光照明与频闪光照明。明场与暗场主要描述相机与光源的位置关系,明场照明指相机直接接收光源在目标上的反射光,一般相机与光源异侧分布,这种方式便于安装;暗场照明指相机间接接收光源在目标上的散射光,一般相机与光源同侧分布,它的优点是能获得高对比度的图像。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的3维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
图像处理模块主要涉及图像去噪、图像增强与复原、缺陷的检测和目标分割。由于现场环境、CCD图像光电转换、传输电路及电子元件都会使图像产生噪声,这些噪声降低了图像的质量从而对图像的处理和分析带来不良影响,所以要对图像进行预处理以去噪。图像增强目是针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。图像复原是通过计算机处理,对质量下降的图像加以重建或复原的处理过程。图像复原很多时候采用与图像增强同样的方法,但图像增强的结果还需要下一阶段来验证;而图像复原试图利用退化过程的先验知识,来恢复已被退化图像的本来面目,如加性噪声的消除、运动模糊的复原等。图像分割的目的是把图像中目标区域分割出来,以便进行下一步的处理。
图像分析模块主要涉及特征提取、特征选择和图像识别
特征提取的作用是从图像像素中提取可以描述目标特性的表达量,把不同目标间的差异映射到低维的特征空间,从而有利于压缩数据量、提高识别率。表面缺陷检测通常提取的特征有纹理特征、几何形状特征、颜色特征、变换系数特征等,用这些多信息融合的特征向量来区可靠地区分不同类型的缺陷;这些特征之间一般存在冗余信息,即并不能保证特征集是最优的,好的特征集应具备简约性和鲁棒性,为此,还需要进一步从特征集中选择更有利于分类的特征,即特征的选择。图像识别主要根据提取的特征集来训练分类器,使其对表面缺陷类型进行正确的分类识别。
数据管理及人机接口模块可在显示器上立即显示缺陷类型、位置、形状、大小,对图像进行存储、查询、统计等。
机器视觉表面缺陷检测主要包括2维检测和3维检测,前者是当前的主要表面缺陷检测方式,也是本文的着重论述之处。
机器视觉在工业检测、包装印刷、食品工业、航空航天、生物医学工程、军事科技、智能交通、文字识别等领域得到了广泛的应用。工业检测领域是机器视觉应用中比重最大的领域,主要用于产品质量检测、产品分类、产品包装等,如:零件装配完整性检测,装配尺寸精度检测,位置/角度测量,零件识别,PCB板检测,印刷品检测,瓶盖检测,玻璃、烟草、棉花检测,以及指纹、汽车牌照、人脸、条码等识别。表面质量检测系统是工业检测的极其重要的组成部分,机器视觉表面缺陷检测在许多行业开始应用,涉及钢板等多种关系国计民生的行业和产品。
表面缺陷检测视觉软件系统
机器视觉软件系统除具有图像处理和分析功能外,还应具有界面友好、操作简单、扩展性好、与图像处理专用硬件兼容等优点。国外视觉检测技术研究开展的较早,已涌现了许多较为成熟的商业化软件,应该比较多的有HALCON、HexSight、Vision Pro、LEADTOOLS等[41]。
HALCON是德国MVtec公司开发的一套完善的标准的机器视觉算法包,拥有应用广泛的机器视觉集成开发环境维视图像开发定制软件,在欧洲以及日本的工业界已经是公认具有最佳效能的Machine Vision软件。HALCON的image processing library,由一千多个各自独立的函数和底层的数据管理核心构成,其函数库可以用C,C++,C#,Visual basic和Delphi等多种普通编程语言访问。HALCON百余种工业相机和图像采集卡提供接口,包括GenlCam,GigE和IIDC 1394。HALCO还具有强大的3维视觉处理能力,另外,自动算子并行处理(AOP)技术是HALCON的一个独特性能。HALCON应用范围涵盖自动化检测、医学和生命科学,遥感探测,通讯和监控等众多领域。
Adept公司出品的HexSight是一款高性能的、综合性的视觉软件开发包,它提供了稳定、可靠及准确定位和检测零件的机器视觉底层函数。HexSight的定位工具是根据几何特征、采用轮廓检测技术来识别对象和模式。在图像凌乱、亮度波动、图像模糊和对象重叠等方面有显著效果。HexSight能处理自由形状的对象,并具有功能强大的去模糊算法。HexSight软件包含一个完整的底层机器视觉函数库,可用来建构完整的高性能2D机器视觉系统,可利用Visual Basic、Visual C++或Borland Dephi平台方便地进行二次开发。其运算速度快,在一台2 GHz的处理器上寻找和定位一般的零部件不超过10 ms;具有1/40亚像素平移重复精度和0.05度旋转重复精度。此外,内置的标定模块能矫正畸变、投影误差和X-Y像素比误差,完整的检测工具包含硬件接口、图像采集、图像标定、图像预处理、几何定位、颜色检测、几何测量、Blob分析、清晰度评价(自动对焦)、模式匹配、边缘探测等多种多样,开放式体系结构,支持DirectShow、DCam,GigE vision等多种通用协议,几乎与市面上所有商业图像采集卡,以及各种USB、1394以及GigE接口的摄像机兼容。
Cognex公司的VisionPro是一套基于.Net的视觉工具,适用于包括FireWire和CameraLink在内的所有硬件平台,利用ActiveX控制可快速完成视觉应用项目程序的原模型开发,可使用相应的Visual Basic、VB.Net、C#或C++搭建出更具个性化的应用程序。
LEADTOOLS在数码图像开发工具领域中已成为全球领导者之一,是目前功能强大的优秀的图形、图像处理开发包,它可以处理各种格式的文件,并包含所有图形、图像的处理和转换功能,支持图形、图像、多媒体、条形码、OCR、Internet、DICOM等等,具有各种软硬件平台下的开发包。
此外,还有Dalsa公司的Sherlock检测软件,日本的OMRON和Keyence,德国SIEMENS等,这些机器视觉软件都能提供完整的表面缺陷检测方法。
国内机器视觉检测系统开发较晚,成果比较好的是维视智造研发的 VisionBank SVS智能视觉软件,其表面缺陷检测、定位、尺寸测量、颜色识别等功能强大,有10大功能模块,128个检测工具。
机器视觉系统的研究和应用范围涵盖了工业、农业、医药、军事、交通和安全等国民经济的各个领域,基于机器视觉的产品表面质量检测在现代自动化生产中得到了越来越多的重视和应用。
机器视觉表面缺陷检测系统中,图像处理和分析算法是重要的内容,通常的流程包括图像的预处理、目标区域的分割、特征提取和选择及缺陷的识别分类。每个处理流程都出现了大量的算法,这些算法各有优缺点和其适应范围。如何提高算法的准确性、执行效率、实时性和鲁棒性,一直是研究者们努力的方向。
机器视觉表面检测比较复杂,涉及众多学科和理论,机器视觉是对人类视觉的模拟,但是目前对人的视觉机制尚不清楚,尽管每一个正常人都是“视觉专家”,但难以用计算机表达自己的视觉过程,因此构建机器视觉检测系统还要进一步通过研究生物视觉机理来完善,使检测进一步向自动化和智能化方向发展。