R语言可视化——ggplot2画回归曲线

目录

  • 0引言
  • 1、构造回归数据
  • 2、画图
    • 2.1载入包
    • 2.2 准备数据添加散点
    • 2.3添加回归线
    • 2.5 添加公式R方
    • 2.6 添加方差分析表
    • 2.6 回归数据调整
  • 3、总结

0引言

在数据可视化——一文入门ggplot2中介绍了ggplot2包以及他的基本语法。在R语言可视化——ggplot2包的八种默认主题及其扩展包中介绍ggplot2包中默认的八种主题。今天实战一下,使用ggplot2包画回归曲线添加回归方程、方差分析表,调整的 R 2 R^2 R2、调整回归数据等,本篇使用默认主题。

1、构造回归数据

画图离不开数据,下面使用生成随机数的方式生成数据,为了代码的可重复性设置随机数种子。

> n = 100
> set.seed(0)
> x <- runif(n, 0, 4)
> y <- x^2 - x + rnorm(n, 0, 0.4)
> MyClass <- factor((x>0) + (x>1) + (x>2) + (x>3),
+ labels = c("0-1", "1-2", "2-3", "3-4"))
> Data <- data.frame(x = x, y = y, class = MyClass)
> head(Data)
          x           y class
1 3.5867888  9.38472004   3-4
2 1.0620347 -0.08479814   1-2
3 1.4884956  1.70366940   1-2
4 2.2914135  2.64102651   2-3
5 3.6328312  9.54268009   3-4
6 0.8067277 -0.05586157   0-1
> str(Data)
'data.frame':   100 obs. of  3 variables:
 $ x    : num  3.59 1.06 1.49 2.29 3.63 ...
 $ y    : num  9.3847 -0.0848 1.7037 2.641 9.5427 ...
 $ class: Factor w/ 4 levels "0-1","1-2","2-3",..: 4 2 2 3 4 1 4 4 3 3 ...
> class(Data)
[1] "data.frame"

下部分使用本节的数据进行画图。

2、画图

2.1载入包

除了载入ggplot2包之外还需要载入扩展包:ggpmisc

library(ggplot2) #加载ggplot2包
library(ggpmisc) #加载ggpmisc包

2.2 准备数据添加散点

p <- ggplot(Data, aes(x, y)) +
 geom_point(color = "green",size = 2, alpha = 0.65)
p

R语言可视化——ggplot2画回归曲线_第1张图片

2.3添加回归线

se参数控制是否显示误差区域。

p + 
 stat_smooth(color = "blue", formula = y ~ x, fill = "blue", method = "lm")+
 stat_fit_deviations(formula = y ~ x, color = "skyblue")

R语言可视化——ggplot2画回归曲线_第2张图片

2.5 添加公式R方

注:label.x 、 label.y调整公式位置。

p + 
 stat_smooth(color = "blue", formula = y ~ x,fill = "blue", method = "lm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ x,  parse = TRUE,
     size = 4, # 公式字体大小
     label.x = 0.1,
     label.y = 0.8)

R语言可视化——ggplot2画回归曲线_第3张图片

2.6 添加方差分析表

p + 
 stat_smooth(color = "blue", formula = y ~ x,fill = "blue", method = "glm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ x,  parse = TRUE,
     size = 4, #公式字体大小
     label.x = 0.1,
     label.y = 0.8) + 
 stat_fit_tb(method = "lm",
             method.args = list(formula = y ~ x),
             tb.type = "fit.anova",
             tb.vars = c(Effect = "term",
                         "自由度" = "df",
                         "均方" = "meansq",
                         "italic(F值)" = "statistic",
                         "italic(P值)" = "p.value"),
             label.y = 0.7, label.x = 0.05,
             size = 4.5,
             parse = TRUE
)

R语言可视化——ggplot2画回归曲线_第4张图片

2.6 回归数据调整

模型的参数形式可以通过I函数去调整,如下把一次数据换成二次的数据。

p + 
 stat_smooth(color = "blue", formula = y ~ I(x^2),fill = "blue", method = "glm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ I(x^2),  parse = TRUE,
     size = 4, #公式字体大小
     label.x = 0.1,
     label.y = 0.8) + 
 stat_fit_tb(method = "lm",
             method.args = list(formula = y ~ I(x^2)),
             tb.type = "fit.anova",
             tb.vars = c(Effect = "term",
                         "自由度" = "df",
                         "均方" = "meansq",
                         "italic(F值)" = "statistic",
                         "italic(P值)" = "p.value"),
             label.y = 0.7, label.x = 0.05,
             size = 4.5,
             parse = TRUE
)

R语言可视化——ggplot2画回归曲线_第5张图片
上面可以看出 R 2 R^2 R2和回归的效果变得更好了。

3、总结

上面的函数局限是只能展示一元回归的信息,多元回归的展示方式下次推出。关注持续关注。

你可能感兴趣的:(R语言可视化)