分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,这些节点分为两类,一类叫“主节点”(Master Node)或者也被称为“名称结点”(NameNode),另一类叫“从节点”(Slave Node)或者也被称为“数据节点”(DataNode)。
NameNode | DataNode |
---|---|
存储元数据 | 存储文件内容 |
元数据保存在内存中 | 文件内容保存在磁盘 |
保存文件、block、datanode之间的映射关系 | 维护了block id到datanode本地文件的映射关系 |
总体而言,HDFS要实现以下目标:
HDFS特殊的设计,在实现上述优良特性的同时,也使得自身具有一些应用局限性,主要包括以下几个方面:
HDFS默认一个块64MB,一个文件被分成多个块,以块作为存储单位。块的大小远远大于普通文件系统,可以最小化寻址开销。
HDFS采用抽象的块概念可以带来以下几个明显的好处:
支持大规模文件存储:文件以块为单位进行存储,一个大规模文件可以被分拆成若干个文件块,不同的文件块可以被分发到不同的节点上,因此,一个文件的大小不会受到单个节点的存储容量的限制,可以远远大于网络中任意节点的存储容量
简化系统设计:首先,大大简化了存储管理,因为文件块大小是固定的,这样就可以很容易计算出一个节点可以存储多少文件块;其次,方便了元数据的管理,元数据不需要和文件块一起存储,可以由其他系统负责管理元数据
适合数据备份:每个文件块都可以冗余存储到多个节点上,大大提高了系统的容错性和可用性
在HDFS中,名称节点(NameNode)负责管理分布式文件系统的命名空间(Namespace),记录了每个文件中各个块所在的数据节点的位置信息,保存了两个核心的数据结构,即FsImage和EditLog。
FsImage文件包含文件系统中所有目录和文件inode的序列化形式。每个inode是一个文件或目录的元数据的内部表示,并包含此类信息:文件的复制等级、修改和访问时间、访问权限、块大小以及组成文件的块。对于目录,则存储修改时间、权限和配额元数据。
FsImage文件没有记录文件包含哪些块以及每个块存储在哪个数据节点。而是由名称节点把这些映射信息保留在内存中,当数据节点加入HDFS集群时,数据节点会把自己所包含的块列表告知给名称节点,此后会定期执行这种告知操作,以确保名称节点的块映射是最新的。
在名称节点启动的时候,它会将FsImage文件中的内容加载到内存中,之后再执行EditLog文件中的各项操作,使得内存中的元数据和实际的同步,存在内存中的元数据支持客户端的读操作。
一旦在内存中成功建立文件系统元数据的映射,则创建一个新的FsImage文件和一个空的EditLog文件。
名称节点起来之后,HDFS中的更新操作会重新写到EditLog文件中,因为FsImage文件一般都很大(GB级别的很常见),如果所有的更新操作都往FsImage文件中添加,这样会导致系统运行的十分缓慢,但是,如果往EditLog文件里面写就不会这样,因为EditLog 要小很多。每次执行写操作之后,且在向客户端发送成功代码之前,edits文件都需要同步更新。
问题:名称节点运行期间EditLog不断变大
在名称节点运行期间,HDFS的所有更新操作都是直接写到EditLog中,久而久之, EditLog文件将会变得很大
虽然这对名称节点运行时候是没有什么明显影响的,但是,当名称节点重启的时候,名称节点需要先将FsImage里面的所有内容映像到内存中,然后再一条一条地执行EditLog中的记录,当EditLog文件非常大的时候,会导致名称节点启动操作非常慢,而在这段时间内HDFS系统处于安全模式,一直无法对外提供写操作,影响了用户的使用。
答:使用SecondaryNameNode第二名称节点。
第二名称节点是HDFS架构中的一个组成部分,它是用来保存名称节点中对HDFS 元数据信息的备份,并减少名称节点重启的时间。SecondaryNameNode一般是单独运行在一台机器上。
数据节点是分布式文件系统HDFS的工作节点,负责数据的存储和读取,会根据客户端或者是名称节点的调度来进行数据的存储和检索,并且向名称节点定期发送自己所存储的块的列表。
每个数据节点中的数据会被保存在各自节点的本地Linux文件系统中。
HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点(NameNode)和若干个数据节点(DataNode)。名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问。集群中的数据节点一般是一个节点运行一个数据节点进程,负责处理文件系统客户端的读/写请求,在名称节点的统一调度下进行数据块的创建、删除和复制等操作。每个数据节点的数据实际上是保存在本地Linux文件系统中的。
HDFS只设置唯一一个名称节点,这样做虽然大大简化了系统设计,但也带来了一些明显的局限性,具体如下:
作为一个分布式文件系统,为了保证系统的容错性和可用性,HDFS采用了多副本方式对数据进行冗余存储,通常一个数据块的多个副本会被分布到不同的数据节点上,如下图,数据块1被分别存放到数据节点A和C上,数据块2被存放在数据节点A和B上。这种多副本方式具有以下几个优点:
HDFS具有较高的容错性,可以兼容廉价的硬件,它把硬件出错看作一种常态,而不是异常,并设计了相应的机制检测数据错误和进行自动恢复,主要包括以下几种情形:名称节点出错、数据节点出错和数据出错。
名称节点保存了所有的元数据信息,其中,最核心的两大数据结构是FsImage和Editlog,如果这两个文件发生损坏,那么整个HDFS实例将失效。因此,HDFS设置了备份机制,把这些核心文件同步复制到备份服务器SecondaryNameNode上。当名称节点出错时,就可以根据备份服务器SecondaryNameNode中的FsImage和Editlog数据进行恢复。
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
FSDataInputStream in = fs.open(new Path(uri));
FSDataOutputStream out = fs.create(new Path(uri));
Hadoop提供了关于HDFS在Linux操作系统上进行文件操作的常用Shell命令以及Java API。同时还可以利用Web界面查看和管理Hadoop文件系统。
备注:Hadoop安装成功后,已经包含HDFS和MapReduce,不需要额外安装。而HBase等其他组件,则需要另外下载安装。
Hadoop支持很多Shell命令,其中fs是HDFS最常用的命令,利用fs可以查看HDFS文件系统的目录结构、上传和下载数据、创建文件等。
Hadoop中有三种Shell命令方式:
hadoop fs适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统
hadoop dfs只能适用于HDFS文件系统
hdfs dfs跟hadoop dfs的命令作用一样,也只能适用于HDFS文件系统
需要注意的是,Hadoop系统安装好以后,第一次使用HDFS时,需要首先在HDFS中创建用户目录。本文采用hadoop用户登录Linux系统,因此,需要在HDFS中为hadoop用户创建一个用户目录,命令如下:
cd /usr/local/hadoop
./bin/hdfs dfs –mkdir –p /user/hadoop
该命令中表示在HDFS中创建一个“/user/hadoop”目录,“–mkdir”是创建目录的操作,“-p”表示如果是多级目录,则父目录和子目录一起创建,这里“/user/hadoop”就是一个多级目录,因此必须使用参数“-p”,否则会出错。
“/user/hadoop”目录就成为hadoop用户对应的用户目录,可以使用如下命令显示HDFS中与当前用户hadoop对应的用户目录下的内容:
./bin/hdfs dfs –ls .
该命令中,“-ls”表示列出HDFS某个目录下的所有内容,“.”表示HDFS中的当前用户目录,也就是“/user/hadoop”目录,因此,上面的命令和下面的命令是等价的:
./bin/hdfs dfs –ls /user/hadoop
如果要列出HDFS上的所有目录,可以使用如下命令:
./bin/hdfs dfs –ls
可以使用如下命令创建一个input目录:
./bin/hdfs dfs –mkdir input
在创建个input目录时,采用了相对路径形式,实际上,这个input目录创建成功以后,它在HDFS中的完整路径是“/user/hadoop/input”。如果要在HDFS的根目录下创建一个名称为input的目录,则需要使用如下命令:
./bin/hdfs dfs –mkdir /input
使用rm命令删除一个目录,比如,可以使用如下命令删除刚才在HDFS中创建的“/input”目录(不是“/user/hadoop/input”目录):
./bin/hdfs dfs –rm –r /input
上面命令中,“-r”参数表示删除“/input”目录及其子目录下的所有内容,如果要删除的一个目录包含了子目录,则必须使用“-r”参数,否则会执行失败。
在实际应用中,经常需要从本地文件系统向HDFS中上传文件,或者把HDFS中的文件下载到本地文件系统中。
可以使用如下命令把本地文件系统的“/home/hadoop/test.txt”上传到HDFS中的当前用户目录的input目录下,也就是上传到HDFS的“/user/hadoop/input/”目录下:
./bin/hdfs dfs -put /home/hadoop/test.txt input
查看HDFS中的myLocalFile.txt这个文件的内容:
./bin/hdfs dfs –cat input/test.txt
把HDFS中的myLocalFile.txt文件下载到本地文件系统中的“/home/hadoop/download/”这个目录下:
./bin/hdfs dfs -get input/myLocalFile.txt /home/hadoop/download
把HDFS的“/user/hadoop/input/test.txt”文件,拷贝到HDFS的另外一个目录“/input”中(注意,这个input目录位于HDFS根目录下):
./bin/hdfs dfs -cp input/test.txt /input
访问 http://ip:9870 (Hadoop3)或 http://ip:50070 (Hadoop2),即可看到HDFS的web管理界面。
Hadoop不同的文件系统之间通过调用Java API进行交互,上面介绍的Shell命令,本质上就是Java API的应用。实际开发中可以参考Hadoop官方的Hadoop API文档,http://hadoop.apache.org/docs/stable/api/ 。
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
public class Chapter3 {
public static void main(String[] args) {
try {
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
byte[] buff = "Hello world".getBytes(); // 要写入的内容
String filename = "test"; //要写入的文件名
FSDataOutputStream os = fs.create(new Path(filename));
os.write(buff,0,buff.length);
System.out.println("Create:"+ filename);
os.close();
fs.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class Chapter3 {
public static void main(String[] args) {
try {
String filename = "test";
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
if(fs.exists(new Path(filename))){
System.out.println("文件存在");
}else{
System.out.println("文件不存在");
}
fs.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
import java.io.BufferedReader;
import java.io.InputStreamReader;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.FSDataInputStream;
public class Chapter3 {
public static void main(String[] args) {
try {
Configuration conf = new Configuration();
conf.set("fs.defaultFS","hdfs://localhost:9000");
conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
FileSystem fs = FileSystem.get(conf);
Path file = new Path("test");
FSDataInputStream getIt = fs.open(file);
BufferedReader d = new BufferedReader(new InputStreamReader(getIt));
String content = d.readLine(); //读取文件一行
System.out.println(content);
d.close(); //关闭文件
fs.close(); //关闭hdfs
} catch (Exception e) {
e.printStackTrace();
}
}
}
学习自厦门大学林子雨老师的《大数据技术原理与应用》:http://www.icourse163.org/course/XMU-1002335004