verilog实现基于Cordic算法的双曲函数计算

          Cordic算法可以用FPGA硬件来实现三角函数,向量旋转,指数函数以及三角函数等数值计算,它是一种从一般的矢量旋转方程中推导得出。采用用不断的旋转求出对应的正弦余弦值,是一种近似求解法。旋转的角度很讲求,比如求取正余弦函数值时每次旋转的角度必须使得 正切值近似等于 1/(2^N)。旋转的目的是让Y轴趋近与0。把每次旋转的角度累加,即得到旋转的角度和即为正切值。如图1所示为Cordic基本原理示意图,图2位求解三角函数示意图。



图1 Cordic基本原理


图2 Cordic求解三角函数

     显然Cordic算法只需要简单的硬件电路就可以实现。根据旋转方向判定,可以选择模式或向量模式进行工作,并通过设置不同的初始条件可以实现特殊函数的数学计算,从而为该算法开创更广泛的应用空间。

在双曲坐标下,Cordic算法的迭代方程为:


  • 与其他Cordic计算不同,由于tanh(-1)(2^0)为无穷大,所以迭代序列须从(i=1)开始,可以将各i处的值计算好并存储在ROM中实现一个小的查找表(LUT)。并从收敛考虑序列i的取值从第4项开始每隔3i+1项须重复一次。n次迭代输出方程为:

  • 可以通过选择适当的初始值及多种操作模式组合完成tanh,exp的计算。下面是初步简单实现的Verilog代码,代码中同时有用到ISE自带的Cordic算法的IP核作了仿真对比:
  • module tanh_test(
            clk,
    	rst_n,
    	z0,//input
    	en,//input
    	cosh_out,
    	sinh_out,
    	e_out,//output
    	busy_end//output
    	
        );
    
    input clk,rst_n;
    input [31:0] z0;//16
    input en;
    output [31:0] sinh_out,cosh_out;//16
    output [31:0] e_out;//16
    output busy_end;
    
    reg en_buff;
    
    wire sub_busy;
    
    reg [31:0] cnt,h_cnt;
    wire [31:0] sub_result;
    reg busy_e;//
    
    
    always @(posedge clk or negedge rst_n)
    begin
    		 if(!rst_n)
    	         begin
    			 en_buff <= 0;
    			 busy_e <= 1'b1;//
    			 cnt <= 0;
    			 h_cnt <= 32'b0;
    	         end
    		 else begin
    		          en_buff <= en;
    			  cnt <= cnt + 1;
                     end		 
    end
    
    reg[31:0] angel [0:12];
    
    always @(posedge clk or negedge rst_n)
    begin
          if(!rst_n)
          begin
    	   angel[0]<=32'b00000000000000001000110010011111;// 0.549306,1/2,tanh
               angel[1]<=32'b00000000000000000100000101100010;//0.255413,1/4
               angel[2]<=32'b00000000000000000010000000101011;//0.125657,1/8
               angel[3]<=32'b00000000000000000001000000000101;//0.062582,1/16
               angel[4]<=32'b00000000000000000001000000000101;//重复迭代一次
               angel[5]<=32'b00000000000000000000100000000000;//0.031260,1/32
               angel[6]<=32'b00000000000000000000010000000000;//0.015626,1/64
               angel[7]<=32'b00000000000000000000001000000000;//0.007813,1/128
    	   angel[8]<=32'b00000000000000000000000100000000;//0.003906250,1/256
               angel[9]<=32'b00000000000000000000000010000000;//0.001953125,1/128
    	   angel[10]<=32'b00000000000000000000000001000000;//0.0009765625,1/128
    	   angel[11]<=32'b00000000000000000000000000100000;//0.00048828125,1/128
    	   angel[12]<=32'b00000000000000000000000000010000;//0.000244140625,1/128
    	   //angel[8]<=17'b00000000000110011;//0.2,1/256,17'b00000000000110011
               //angel[9]<=17'b00000000000011001;//0.1,1/512,angel[9]<=17'b00000000000011001
         end
    end
    reg[31:0] reg_z[0:13];//1符号,15整数,16小数
    reg[31:0] reg_x[0:13];
    reg[31:0] reg_y[0:13];
    reg[4:0] i;
    
    always @(posedge clk or negedge rst_n)
    begin
    		 if(!rst_n)
    		 begin
    			 h_cnt <= 0;
    	         end
    		 else if(en && !en_buff)//&& (busy_e == 1'b1)
    		 begin
    			  reg_x[0] <= 32'b00000000000000010011010100011000;//(1/0.8282=1.2074)
    			  reg_y[0] <= 0;
    			  reg_z[0] <= z0;//初始值为v=1
    	         end
    		 else begin
    		     h_cnt <= h_cnt+1'b1;/////////////////////////
    		     for(i = 1;i <= 13;i = i+1'b1)
    		     begin
    				   if(reg_z[i-1][31])
    				   begin
    					  reg_x[i] <= reg_x[i-1]-(reg_y[i-1]>>i);//z<0,d=-1,否则d=1
    					  reg_y[i] <= reg_y[i-1]-(reg_x[i-1]>>i);
    					  reg_z[i] <= reg_z[i-1]+angel[i-1];
    			           end
    				   else begin
    					  reg_x[i] <= reg_x[i-1]+(reg_y[i-1]>>i);
    					  reg_y[i] <= reg_y[i-1]+(reg_x[i-1]>>i);
    					  reg_z[i] <= reg_z[i-1]-angel[i-1];
    				   end
    		     end
    				  
    		     if(h_cnt >= 20)
    		     begin
    		          busy_e <= 1'b0;
    		     end
    				  
    		 end
    end
    
    assign sinh_out = reg_y[11];//<<4
    assign cosh_out = reg_x[11];
    assign e_out = sub_result;
    assign busy_end =(sub_busy | busy_e);
    
    reg [15:0] in_phase;
    wire [15:0] out_cosh;
    wire [15:0] out_sinh;
    initial
    begin
         in_phase <= 16'b0010000000000000;//(1,第16位符号位,第15,14位整数位,13位小数位)
    end
    
      cordic_e your_instance_name (
               .phase_in(in_phase), // input [15 : 0] phase_in
               .x_out(out_cosh), // output [15 : 0] x_out
               .y_out(out_sinh), // output [15 : 0] y_out
               .clk(clk) // input clk
      );
      e_sub cosh_sub_sinh(
    	 
    	    .clk(clk),
    	    .rst_n(rst_n),
    	    .sub_a(cosh_out),
    	    .sub_b(sinh_out),
    	    .sub_result(sub_result),
    	    .busy_e(busy_e),
    	    .sub_busy(sub_busy)
    		 
       );
    
    
    endmodule

        仿真结果图,计算角度为1时的值:

(32'h00018aae=1.5417,sinh(1)真实值1.5431;32'h00012bfd=1.1718,cosh(1)=1.1752;32'h00005eb1=0.3699,e^(-1)=0.3679。使用IP核计算结果:16'h62d1=1.5440,16'h4b4b=1.1765)


你可能感兴趣的:(verilog实现基于Cordic算法的双曲函数计算)