PYNQ FIR滤波器硬件加速(二)

在生成OVERLAY之后,就可以上板实测了。
在地址栏输入\\pynq\xilinx\pynq\overlays
PYNQ FIR滤波器硬件加速(二)_第1张图片
然后在该目录下新建文件夹,并命名为fir_accel,把生成的 fir_accel.tcl和fir_accel.bit复制到该文件夹

from pynq import Overlay
import pynq.lib.dma

# Load the overlay
overlay = Overlay('/home/xilinx/pynq/overlays/fir_accel/fir_accel.bit')

# Load the FIR DMA
dma = overlay.filter.fir_dma
from pynq import Xlnk
import numpy as np

# Allocate buffers for the input and output signals
xlnk = Xlnk()
in_buffer = xlnk.cma_array(shape=(n,), dtype=np.int32)
out_buffer = xlnk.cma_array(shape=(n,), dtype=np.int32)

# Copy the samples to the in_buffer
np.copyto(in_buffer,samples)

# Trigger the DMA transfer and wait for the result
import time
start_time = time.time()
dma.sendchannel.transfer(in_buffer)
dma.recvchannel.transfer(out_buffer)
dma.sendchannel.wait()
dma.recvchannel.wait()
stop_time = time.time()
hw_exec_time = stop_time-start_time
print('Hardware FIR execution time: ',hw_exec_time)
print('Hardware acceleration factor: ',sw_exec_time / hw_exec_time)

# Plot to the notebook
plot_to_notebook(t,samples,1000,out_signal=out_buffer)

# Free the buffers
in_buffer.close()
out_buffer.close()

运行结果如下:
PYNQ FIR滤波器硬件加速(二)_第2张图片

你可能感兴趣的:(FPGA)