整体代码如下所示:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
path=r'D:\Workspaces\Jupyter-notebook\datasets\mldata\iris.data'
df = pd.read_csv(path, header=0)
Iris1=df.values[0:50,0:4]
Iris2=df.values[50:100,0:4]
Iris3=df.values[100:150,0:4]
m1=np.mean(Iris1,axis=0)
m2=np.mean(Iris2,axis=0)
m3=np.mean(Iris3,axis=0)
s1=np.zeros((4,4))
s2=np.zeros((4,4))
s3=np.zeros((4,4))
for i in range(0,30,1):
a=Iris1[i,:]-m1
a=np.array([a])
b=a.T
s1=s1+np.dot(b,a)
for i in range(0,30,1):
c=Iris2[i,:]-m2
c=np.array([c])
d=c.T
s2=s2+np.dot(d,c)
#s2=s2+np.dot((Iris2[i,:]-m2).T,(Iris2[i,:]-m2))
for i in range(0,30,1):
a=Iris3[i,:]-m3
a=np.array([a])
b=a.T
s3=s3+np.dot(b,a)
sw12=s1+s2
sw13=s1+s3
sw23=s2+s3
#投影方向
a=np.array([m1-m2])
sw12=np.array(sw12,dtype='float')
sw13=np.array(sw13,dtype='float')
sw23=np.array(sw23,dtype='float')
#判别函数以及T
#需要先将m1-m2转化成矩阵才能进行求其转置矩阵
a=m1-m2
a=np.array([a])
a=a.T
b=m1-m3
b=np.array([b])
b=b.T
c=m2-m3
c=np.array([c])
c=c.T
w12=(np.dot(np.linalg.inv(sw12),a)).T
w13=(np.dot(np.linalg.inv(sw13),b)).T
w23=(np.dot(np.linalg.inv(sw23),c)).T
#print(m1+m2) #1x4维度 invsw12 4x4维度 m1-m2 4x1维度
T12=-0.5*(np.dot(np.dot((m1+m2),np.linalg.inv(sw12)),a))
T13=-0.5*(np.dot(np.dot((m1+m3),np.linalg.inv(sw13)),b))
T23=-0.5*(np.dot(np.dot((m2+m3),np.linalg.inv(sw23)),c))
kind1=0
kind2=0
kind3=0
newiris1=[]
newiris2=[]
newiris3=[]
for i in range(29,49):
x=Iris1[i,:]
x=np.array([x])
g12=np.dot(w12,x.T)+T12
g13=np.dot(w13,x.T)+T13
g23=np.dot(w23,x.T)+T23
if g12>0 and g13>0:
newiris1.extend(x)
kind1=kind1+1
elif g12<0 and g23>0:
newiris2.extend(x)
elif g13<0 and g23<0 :
newiris3.extend(x)
#print(newiris1)
for i in range(29,49):
x=Iris2[i,:]
x=np.array([x])
g12=np.dot(w12,x.T)+T12
g13=np.dot(w13,x.T)+T13
g23=np.dot(w23,x.T)+T23
if g12>0 and g13>0:
newiris1.extend(x)
elif g12<0 and g23>0:
newiris2.extend(x)
kind2=kind2+1
elif g13<0 and g23<0 :
newiris3.extend(x)
for i in range(29,49):
x=Iris3[i,:]
x=np.array([x])
g12=np.dot(w12,x.T)+T12
g13=np.dot(w13,x.T)+T13
g23=np.dot(w23,x.T)+T23
if g12>0 and g13>0:
newiris1.extend(x)
elif g12<0 and g23>0:
newiris2.extend(x)
elif g13<0 and g23<0 :
newiris3.extend(x)
kind3=kind3+1
#花瓣与花萼的长度散点图
plt.scatter(df.values[:50, 3], df.values[:50, 1], color='red', marker='o', label='setosa')
plt.scatter(df.values[50:100, 3], df.values[50: 100, 1], color='blue', marker='x', label='versicolor')
plt.scatter(df.values[100:150, 3], df.values[100: 150, 1], color='green', label='virginica')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.title("花瓣与花萼长度的散点图")
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False
plt.legend(loc='upper left')
plt.show()
#花瓣与花萼的宽度度散点图
plt.scatter(df.values[:50, 4], df.values[:50, 2], color='red', marker='o', label='setosa')
plt.scatter(df.values[50:100, 4], df.values[50: 100, 2], color='blue', marker='x', label='versicolor')
plt.scatter(df.values[100:150, 4], df.values[100: 150, 2], color='green', label='virginica')
plt.xlabel('petal width')
plt.ylabel('sepal width')
plt.title("花瓣与花萼宽度的散点图")
plt.legend(loc='upper left')
plt.show()
correct=(kind1+kind2+kind3)/60
print("样本类内离散度矩阵S1:",s1,'\n')
print("样本类内离散度矩阵S2:",s2,'\n')
print("样本类内离散度矩阵S3:",s3,'\n')
print('-----------------------------------------------------------------------------------------------')
print("总体类内离散度矩阵Sw12:",sw12,'\n')
print("总体类内离散度矩阵Sw13:",sw13,'\n')
print("总体类内离散度矩阵Sw23:",sw23,'\n')
print('-----------------------------------------------------------------------------------------------')
print('判断出来的综合正确率:',correct*100,'%')
本人使用的数据集来自:下载地址
import pandas as pd
df_Iris = pd.read_csv('D:\Workspaces\Jupyter-notebook\datasets\mldata\Iris.csv')
#前5行
df_Iris.head()
#后5行
df_Iris.tail()
Id: 鸢尾花编号
SepaLengthCm: 花萼长度, 单位cm
SepalWidthCm: 花萼宽度, 单位cm
PetalLengthCm: 花瓣长度, 单位cm
PetalWidthCm; 花瓣宽度, 单位cm
Species: 鸢尾花种类.
#查看数据整体信息
df_Iris.info()
我们可以得出信息:150行, 6列,4个64位浮点数, 1个64位整型, 1个python对象, 数据中无缺失值
df_Iris.describe()
花萼长度最小值4.30, 最大值7.90, 均值5.84, 中位数5.80, 右偏
花萼宽度最小值2.00, 最大值4.40, 均值3.05, 中位数3.00, 右偏
花瓣长度最小值1.00, 最大值6.90, 均值3.76, 中位数4.35, 左偏
花瓣宽度最小值0.10, 最大值2.50, 均值1.20, 中位数1.30, 左偏
按中位数来度量: 花萼长度 > 花瓣长度 > 花萼宽度 > 花瓣宽度
#注意这里是大写的字母O, 不是数字0.
df_Iris.describe(include =['O']).T
总数150, 3个种类, 最大频数为50, 也就是每种都为50个。注意top里的指的不是Iris-versicolor最多, 是在频数相同的基础上按照字符串长度进行排名。
可以通过下面的方法对每种进行计数:
df_Iris.Species.value_counts()
去掉Species特征中的’Iris-'字符
这里拥有两种方法,我们使用第二种:
#第一种方法: 替换
# df_Iris['Species']= df_Iris.Species.str.replace('Iris-','')
#第二种方法: 分割
df_Iris['Species']= df_Iris.Species.apply(lambda x: x.split('-')[1])
df_Iris.Species.unique()
Seaborn是一个python的可视化库, 它基于matplotlib, 这使得它能与pandas紧密结合, 并且提供了高级绘图界面, 能更方便地完成探索性分析。
import seaborn as sns
import matplotlib.pyplot as plt
#sns初始化
sns.set()
#设置散点图x轴与y轴以及data参数
sns.relplot(x='SepalLengthCm', y='SepalWidthCm', data = df_Iris)
plt.title('SepalLengthCm and SepalWidthCm data analysize')
花萼的长度和宽度在散点图上分了两个簇, 而且两者各自都有一定的关系. 鸢尾花又分为三个品种, 不妨看看关于这三个品种的分布
#hue表示按照Species对数据进行分类, 而style表示每个类别的标签系列格式不一致.
sns.relplot(x='SepalLengthCm', y='SepalWidthCm', hue='Species', style='Species', data=df_Iris )
plt.title('SepalLengthCm and SepalWidthCm data by Species')
可以看到setosa这种花的花萼长度和宽度有明显的线性关系, 当然其他两种也存在一定的关系, 花萼的属性看完了, 看下花瓣的长度与宽度分布散点图:
#花瓣长度与宽度分布散点图
sns.relplot(x='PetalLengthCm', y='PetalWidthCm', hue='Species', style='Species', data=df_Iris )
plt.title('PetalLengthCm and PetalWidthCm data by Species')
另外, 还可以对比花萼与花瓣的长度, 花萼与花瓣的宽度之间的关系:
#花萼与花瓣长度分布散点图
sns.relplot(x='SepalLengthCm', y='PetalLengthCm', hue='Species', style='Species', data=df_Iris )
plt.title('SepalLengthCm and PetalLengthCm data by Species')
#花萼与花瓣宽度分布散点图
sns.relplot(x='SepalWidthCm', y='PetalWidthCm', hue='Species', style='Species', data=df_Iris )
plt.title('SepalWidthCm and PetalWidthCm data by Species')
花萼的长度与花瓣的宽度, 花萼的宽度与花瓣的长度之间应当也存在某种关系:
#花萼的长度与花瓣的宽度分布散点图
sns.relplot(x='SepalLengthCm', y='PetalWidthCm', hue='Species', style='Species', data=df_Iris )
plt.title('SepalLengthCm and PetalWidthCm data by Species')
#花萼的宽度与花瓣的长度分布散点图
sns.relplot(x='SepalWidthCm', y='PetalLengthCm', hue='Species', style='Species', data=df_Iris )
plt.title('SepalWidthCm and PetalLengthCm data by Species')
Id编号与花萼长度, 花萼宽度, 花瓣长度, 花瓣宽度之间的关系:
#花萼长度与Id之间关系图
sns.relplot(x="Id", y="SepalLengthCm",hue="Species", style="Species",kind="line", data=df_Iris)
plt.title('SepalLengthCm and Id data analysize')
#花萼宽度与Id之间关系图
sns.relplot(x="Id", y="SepalWidthCm",hue="Species", style="Species",kind="line", data=df_Iris)
plt.title('SepalWidthCm and Id data analysize')
#花瓣长度与Id之间关系图
sns.relplot(x="Id", y="PetalLengthCm",hue="Species", style="Species",kind="line", data=df_Iris)
plt.title('PetalLengthCm and Id data analysize')
#花瓣宽度与Id之间关系图
sns.relplot(x="Id", y="PetalWidthCm",hue="Species", style="Species",kind="line", data=df_Iris)
plt.title('PetalWidthCm and Id data analysize')
可以得到Id中前50个为setosa, 51到100为versicolour, 101到150为Virginica, 以及每个种类对应属性值的范围, 每个种类中的属性与其对应的Id没有明确的关系。
散点图和直方图同时显示, 可以直观地看出哪组频数最大, 哪组频数最小。
sns.jointplot(x='SepalLengthCm', y='SepalWidthCm', data=df_Iris)
sns.jointplot(x='PetalLengthCm', y='PetalWidthCm', data=df_Iris)
对于频数的值, 在散点图上数点的话, 显然效率太低, 还易出错, 下面引出distplot
这里的分组是按照上面jointplot里的组数进行设置, 现在就很直观地看到各组对应的频数。
#绘制直方图, 其中kde=False表示不显示核函数估计图,这里为了更方便去查看频数而设置它为False.
sns.distplot(df_Iris.SepalLengthCm,bins=8, hist=True, kde=False)
#绘制直方图, 其中kde=False表示不显示核函数估计图,这里为了更方便去查看频数而设置它为False.
sns.distplot(df_Iris.SepalWidthCm,bins=13, hist=True, kde=False)
#绘制直方图, 其中kde=False表示不显示核函数估计图,这里为了更方便去查看频数而设置它为False.
sns.distplot(df_Iris.PetalLengthCm, bins=5, hist=True, kde=False)
#绘制直方图, 其中kde=False表示不显示核函数估计图,这里为了更方便去查看频数而设置它为False.
sns.distplot(df_Iris.PetalWidthCm, bins=5, hist=True, kde=False)
boxplot所绘制的就是箱线图, 它能显示出一组数据的最大值, 最小值, 四分位数以及异常。
#比如数据中的SepalLengthCm属性
sns.boxplot(x='SepalLengthCm', data=df_Iris)
#比如数据中的SepalWidthCm属性
sns.boxplot(x='SepalWidthCm', data=df_Iris)
为了更直观地对比四个属性之间的关系, 我将四个属性对应的数值合并在新的DataFrame Iris中.
#对于每个属性的data创建一个新的DataFrame
Iris1 = pd.DataFrame({"Id": np.arange(1,151), 'Attribute': 'SepalLengthCm', 'Data':df_Iris.SepalLengthCm, 'Species':df_Iris.Species})
Iris2 = pd.DataFrame({"Id": np.arange(151,301), 'Attribute': 'SepalWidthCm', 'Data':df_Iris.SepalWidthCm, 'Species':df_Iris.Species})
Iris3 = pd.DataFrame({"Id": np.arange(301,451), 'Attribute': 'PetalLengthCm', 'Data':df_Iris.PetalLengthCm, 'Species':df_Iris.Species})
Iris4 = pd.DataFrame({"Id": np.arange(451,601), 'Attribute': 'PetalWidthCm', 'Data':df_Iris.PetalWidthCm, 'Species':df_Iris.Species})
#将四个DataFrame合并为一个.
Iris = pd.concat([Iris1, Iris2, Iris3, Iris4])
#绘制箱线图
sns.boxplot(x='Attribute', y='Data', data=Iris)
对上图做一下简单分析: 就中位数来说, SepalLenthCm > PetalLengthCm > SepalWidthCm > PetalWidthCm; 就波动程度来说, PetalLengthCm > PetalWidthCm > SepalLengthCm > SepalWidthCm; 就异常值来说, 只有SepalWidthCm中存在异常值.。
将鸢尾花的三种种类再加入到箱线图中:
sns.boxplot(x='Attribute', y='Data',hue='Species', data=Iris)
这样就很容易能够对比三个种类在四个属性中的表现状况:
除了SepalWidthCm属性外, 中位数在其他属性的三种花中均表现为: Virginica > versicolour > setosa
除了setosa种类外, 中位数在其他种类的四个属性中均表现为: SepalLengthCm > PetalLengthCm > SepalWidthCm > PetalWidthCm
violinplot绘制的是琴图, 是箱线图与核密度图的结合体, 既可以展示四分位数, 又可以展示任意位置的密度。
sns.violinplot(x='Attribute', y='Data', hue='Species', data=Iris )![在这里插入图片描述](https://img-blog.csdnimg.cn/20200505180545466.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQxMTMzMzc1,size_16,color_FFFFFF,t_70)
上图中具体细节显示不是很明显, 对于PetalWidthCm都有些模糊了, 下面将拆分成四个小图, 另外为了和箱线图对比, 将箱线图也绘制出来。
#花萼长度
sns.boxplot(x='Species', y='SepalLengthCm', data=df_Iris)
sns.violinplot(x='Species', y='SepalLengthCm', data=df_Iris)
plt.title('SepalLengthCm data by Species')
#花萼宽度
sns.boxplot(x='Species', y='SepalWidthCm', data=df_Iris)
sns.violinplot(x='Species', y='SepalWidthCm', data=df_Iris)
plt.title('SepalWidthCm data by Species')
#花瓣长度
sns.boxplot(x='Species', y='PetalLengthCm', data=df_Iris)
sns.violinplot(x='Species', y='PetalLengthCm', data=df_Iris)
plt.title('PetalLengthCm data by Species')
#花瓣宽度
sns.boxplot(x='Species', y='PetalWidthCm', data=df_Iris)
sns.violinplot(x='Species', y='PetalWidthCm', data=df_Iris)
plt.title('PetalWidthCm data by Species')
#删除Id特征, 绘制分布图
sns.pairplot(df_Iris.drop('Id', axis=1), hue='Species')
#保存图片, 由于在jupyter notebook中太大, 不能一次截图
plt.savefig('pairplot.png')
plt.show()
综上, 花萼的长度, 花萼的宽度, 花瓣的长度, 花瓣的宽度与花的种类之间均存在一定的相关性, 且对于这三个种类的分布, satosa在任何一种分布中较其他两者集中; 就同一种花的平均水平来看, 其花萼的长度最长, 花瓣的宽度最短; 就同一属性的平均水平来看, 三种花在除了花萼的宽度外的属性中平均水平均表现为: Virginica > versicolour > setosa。
采用决策树分类算法
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
X = df_Iris[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
y = df_Iris['Species']
#将数据按照8:2的比例随机分为训练集, 测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
#初始化决策树模型
dt = DecisionTreeClassifier()
#训练模型
dt.fit(X_train, y_train)
#用测试集评估模型的好坏
dt.score(X_test, y_test)
不过我发现每次运行出来得到的结果是不一样的,暂时还不知道为什么,留待解决。
本次的学习到这里就结束了,其中还是有许多不懂的地方,希望大家可以相互学习!