数学分析解题思路

吉米多维奇数学分析中一道习题的分享
证明: 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6} 12+22++n2=6n(n+1)(2n+1)
两种方法:

  1. 数学归纳法
    证明: 当 n = 1 n=1 n=1时,等式显然成立
    n = k n=k n=k时,等式成立,即 1 2 + 2 2 + ⋯ + k 2 = k ( k + 1 ) ( 2 k + 1 ) 6 + ( k + 1 ) 2 1^2+2^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}+(k+1)^2 12+22++k2=6k(k+1)(2k+1)+(k+1)2,则对于 n = k + 1 n=k+1 n=k+1时,有
    1 2 + 2 2 + ⋯ + k 2 + ( k + 1 ) 2 = k ( k + 1 ) ( 2 k + 1 ) 6 + ( k + 1 ) 2 = 1 6 ( k + 1 ) [ k ( 2 k + 1 ) + 6 ( k + 1 ) ] = ( k + 1 ) [ ( k + 1 ) + 1 ] [ 2 ( k + 1 ) + 1 ] 6 \begin{aligned} 1^2+2^2+\cdots+k^2+(k+1)^2&=\frac{k(k+1)(2k+1)}{6}+(k+1)^2 \\ &=\frac{1}{6}(k+1)[k(2k+1)+6(k+1)]=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6} \end{aligned} 12+22++k2+(k+1)2=6k(k+1)(2k+1)+(k+1)2=61(k+1)[k(2k+1)+6(k+1)]=6(k+1)[(k+1)+1][2(k+1)+1]
    即对于 n = k + 1 n=k+1 n=k+1时,等式也成立,于是,对于任何正整数 n n n,有 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6} 12+22++n2=6n(n+1)(2n+1)
    2.直接验证法
    首先 ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3=n^3+3n^2+3n+1 (n+1)3=n3+3n2+3n+1 n 2 = 1 3 [ ( n + 1 ) 3 − n 3 − 3 n − 1 ] n^2=\frac{1}{3}[(n+1)^3-n^3-3n-1] n2=31[(n+1)3n33n1]
    那么求和可以写为:
    1 3 [ 2 3 − 1 3 − 3 − 1 + 3 3 − 2 3 − 3 ∗ 2 − 1 + ⋯ + ( n + 1 ) 3 − n 3 − 3 n − 1 ] \frac{1}{3}\left[ 2^3-1^3-3-1+3^3-2^3-3*2-1+\cdots +(n+1)^3-n^3-3n-1 \right] 31[231331+3323321++(n+1)3n33n1]
    显然三次方项都被相互抵消, − 3 − 3 ∗ 2 + 3 ∗ 3 − ⋯ -3-3*2+3*3-\cdots 332+33是等差数列, − 1 − 1 − 1 − 1 − ⋯ -1-1-1-1-\cdots 1111是常数列.那么上式改写为:
    = 1 3 [ ( n + 1 ) 3 + 1 3 − n − 3 n ( n + 1 ) 2 ] = 1 3 3 n 2 + 3 n − 2 n − 2 2 ( 通 分 ) = 2 n 3 + 3 n 2 + n 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} &=\frac{1}{3}\left[ (n+1)^3+1^3-n-\frac{3n(n+1)}{2}\right] \\ &=\frac{1}{3}\frac{3n^2+3n-2n-2}{2} (通分) \\ &=\frac{2n^3+3n^2+n}{6} \\ &=\frac{n(n+1)(2n+1)}{6}\\ \end{aligned} =31[(n+1)3+13n23n(n+1)]=3123n2+3n2n2=62n3+3n2+n=6n(n+1)(2n+1)
    上式得证

你可能感兴趣的:(数学分析)