谬误回归现象

谬误回归现象反映了平稳的时间序列为什么如此重要。
考虑两个随机游走模型:Yt=Yt-1+ut, Xt=Xt-1+vt。这两个时间序列都是非平稳的,即它们是I(1)或表现出随机趋势。
假设将Yt对Xt回归。由于二者是不相关的I(1)过程,所以这一回归得到的R方应该趋于0,即这两个变量间不应该有任何关系。
但回归结果显示X的系数是高度统计显著的,尽管R方值有些低,但它在统计上显著异于零。基于这些结论,你可能得出Y和X之间存在显著统计关系的结论,尽管先验假定它们之间没有任何关系。这就是对谬误或无谓回归(phenomenon of spurious or nonsense regression)的简单概括。
极低的Durbin-Watson值(d值)表明存在着很强的一阶自相关。R方>d就是怀疑所估计的回归是谬误回归的一个很好的经验法则
这种现象提醒我们,基于表现出随机趋势的时间序列做回归分析时应该高度警惕。

你可能感兴趣的:(谬误回归现象)