matlab 怎么解欠定方程 有Warning:Rank deficient,rank=2 tol=4.6151e-015 (转百度知道)

Matlab求解线性方程组
AX=B或XA=B 
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: 
X=A\B表示求矩阵方程AX=B的解; 
X=B/A表示矩阵方程XA=B的解。 
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 

如果矩阵A不是方阵,其维数是m×n,则有: 
m=n 恰定方程,求解精确解; 
m>n 超定方程,寻求最小二乘解; 
mm。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快; 
【例7】 
求解超定方程组 
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13] 
A= 
2 -1 3 
3 1 -5 
4 -1 1 
1 3 -13 
b=[3 0 3 -6]’; 
rank(A) 
ans= 
3 
x1=A\b 
x1= 
1.0000 
2.0000 
1.0000 
x2=pinv(A)*b
x2= 
1.0000 
2.0000 
1.0000 
A*x1-b 
ans= 
1.0e-014 
-0.0888 
-0.0888 
-0.1332 
0 
可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。 

三.欠定方程组 
欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。 
【例8】 
解欠定方程组 
A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5] 
A= 
1 -2 1 1 
1 -2 1 -1 
1 -2 1 -1 
1 -2 1 5 
b=[1 -1 5]’ 
x1=A\b 
Warning:Rank deficient,rank=2 tol=4.6151e-015 
x1= 
0 
-0.0000 
0 
1.0000 
x2=pinv(A)*b 
x2= 
0 
-0.0000 
0.0000 
1.0000 

四.方程组的非负最小二乘解 
在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为: 
(1)X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下; 
(2)X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))*norm(A,1)*eps,矩阵的-1范数越大,求解的误差越大; 
(3)[X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。 
【例9】求方程组的非负最小二乘解 
A=[3.4336 -0.5238 0.6710 
-0.5238 3.2833 -0.7302 
0.6710 -0.7302 4.0261]; 
b=[-1.000 1.5000 2.5000]; 
[X,W]=nnls(A,b) 
X= 
0 
0.6563 
0.6998 
W= 
-3.6820 
-0.0000 
-0.0000 
x1=A\b 
x1= 
-0.3569 
0.5744 
0.7846 
A*X-b 
ans= 
1.1258 
0.1437 
-0.1616 
A*x1-b 
ans= 
1.0e-0.15 
-0.2220 
0.4441 
0

你可能感兴趣的:(matlab 怎么解欠定方程 有Warning:Rank deficient,rank=2 tol=4.6151e-015 (转百度知道))