LeetCode题解系列--188. Best Time to Buy and Sell Stock IV

描述

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

思路

这题是股票系列的第四题,前面三题为121、122、123。
在这题中,问题规模被扩大到最多可以使用K次交易所能取得的最大收益。
首先这还是一道DP的问题。
我们首先对于K对于分类,如果K的次数足够大,那么可能在每次股票上涨的时刻购买,所以对于这种情况,我们直接将所有股票上涨额累加起来即可:

if (k >= n / 2) {
            // we have enough transactions times to earn all money
            int profit = 0;
            int temp;
            for (int i = 0; i < n - 1; ++i) {
                temp = prices[i + 1] - prices[i];
                if (temp > 0) {
                    profit += temp;
                }
            }
            return profit;
        }

那么对于次数不够的情况,想起来其实比较困难,这道理我参考了LeetCode上的discussion。
对于DP,首先确定我们求解的状态,假设maxProfitByKTransactionsBeforeDayI[k][I] 为前I天使用最多k次交易能获得最大的收益。
状态转移方程:

maxProfitByKTransactionsBeforeDayI[k][i]=max(maxProfitByKTransactionsBeforeDayI[k][i1],max1<=m<j(maxProfitByKTransactionsBeforeDayI[k1][m]prices[m]))

说来这个逻辑挺复杂的,我自己也是很困难才理解,大概可以这么理解:
如果想第j天卖出股票并获得最大利润,就要在第m天买入,而这个m需要满足,在m

完整解答

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        // for weird input
        if (prices.size() <= 1) {
            return 0;
        }
        int n = prices.size();
        if (k >= n / 2) {
            // we have enough transactions times to earn all money
            int profit = 0;
            int temp;
            for (int i = 0; i < n - 1; ++i) {
                temp = prices[i + 1] - prices[i];
                if (temp > 0) {
                    profit += temp;
                }
            }
            return profit;
        }
        vector< vector<int> > maxProfitByKTransactionsBeforeDayI(k + 1, vector<int>(n, 0));
        for (int i = 1; i <= k; ++i) {
            int localMax = maxProfitByKTransactionsBeforeDayI[i - 1][0] - prices[0];
            for (int j = 1; j < n; ++j) {
                maxProfitByKTransactionsBeforeDayI[i][j] = max(maxProfitByKTransactionsBeforeDayI[i][j - 1], localMax + prices[j]);
                localMax = max(localMax, maxProfitByKTransactionsBeforeDayI[i - 1][j] - prices[j]);
            }
        }
        return maxProfitByKTransactionsBeforeDayI[k][n - 1];
    }
};

你可能感兴趣的:(C++,leetcode)