- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- 图计算:基于SparkGrpahX计算聚类系数
妙龄少女郭德纲
Spark图算法Scala聚类数据挖掘机器学习
图计算:基于SparkGrpahX计算聚类系数文章目录图计算:基于SparkGrpahX计算聚类系数一、什么是聚类系数二、基于SparkGraphX的聚类系数代码实现总结一、什么是聚类系数聚类系数(ClusteringCoefficient)是图计算和网络分析中的一个重要概念,用于衡量网络中节点的局部聚集程度。它有助于理解网络中节点之间的紧密程度和网络的结构特性。这是一种用来衡量图中节点聚类程度的
- ActiveMQ集群、负载均衡、消息回流
星星都没我亮
ActiveMQactivemq
文章目录集群配置主备集群SharedFileSystemMasterSlavefailover故障转移协议TransportOptions负载均衡静态网络配置可配置属性URI的几个属性NetworkConnectorProperties动态网络配置消息回流消息副本集群配置官方文档http://activemq.apache.org/clustering主备集群http://activemq.apa
- 数学建模统计题中常用的聚类分类
皆过客,揽星河
数学建模大赛数学建模算法k-means数据处理Pythonnumpy
聚类分类K均值聚类(K-MeansClustering)是一种广泛使用的聚类算法,旨在将数据点分成K个簇,使得簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。以下是对K均值聚类的详细介绍:算法原理K均值聚类算法通过迭代的方式优化簇的划分,步骤如下:1.初始化:选择K个初始簇中心(也称为质心)。这些初始簇中心可以通过随机选择K个数据点,或使用更高级的方法(如K均值++初始化)来确定。2.分配阶段
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- 论文阅读:scHybridBERT
dundunmm
论文阅读机器学习人工智能神经网络深度学习单细胞基因测序
ZhangWei,WuChenjun,XingFeiyang,JiangMingfeng,ZhangYixuan,LiuQi,ShiZhuoxing,DaiQi,scHybridBERT:integratinggeneregulationandcellgraphforspatiotemporaldynamicsinsingle-cellclustering,BriefingsinBioinform
- CLIQUE算法原理及Python实践
doublexiao79
数据分析与挖掘算法python机器学习
CLIQUE(ClusteringInQUEst)算法是一种基于网格的聚类方法,其主要目的是在数据集中发现子空间中基于密度的簇。以下是CLIQUE算法原理的详细解释:一、空间划分CLIQUE算法首先将数据对象的整个嵌入空间划分成多个单元(通常是超矩形)。这是通过将每个维度划分成不重叠的区间来实现的。每个单元代表数据空间中的一个特定区域,其大小由划分的区间决定。这种划分方式使得算法能够高效地处理大规
- 机器学习 第9章-聚类
Rin__________
机器学习笔记机器学习聚类支持向量机
机器学习第9章-聚类9.1聚类任务在“无监督学习”(unsupervisedlearning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。此类学习任务中研究最多、应用最广的是“聚类”(clustering)。聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”(cluster)。通过这样的划分,每
- 机器学习:DBSCAN算法(内有精彩动图)
吃什么芹菜卷
机器学习机器学习算法人工智能
目录前言一、DBSCAN算法1.动图展示(图片转载自网络)2.步骤详解3.参数配置二、代码实现1.完整代码2.代码详解1.导入数据2.通过循环确定参数最佳值总结前言DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。一、DBSCAN算法1.动图展示(图片转载自网
- PCL LCCP点云分割
大鱼BIGFISH
c++PCLLCCP点云分割
文章目录一、简介二、实现代码三、实现效果参考资料一、简介与CPC点云分割算法类似,LCCP(LocallyConvexConnectedPatches)也是一种基于超体素的点云分割算法。它结合了几何特征和拓扑关系,用于在三维点云数据中提取具有语义意义的区域或对象。1.超体素生成:首先,点云通过SupervoxelClustering被划分成多个超体素。每个超体素代表一个局部区域,具有类似的颜色、空
- 跟着Cell学单细胞转录组分析(十二):转录因子分析
KS科研分享与服务
转录因子分析可以了解细胞异质性背后的基因调控网络的异质性。转录因子分析也是单细胞转录组常见的分析内容,R语言分析一般采用的是SCENIC包,具体原理可参考两篇文章。1、《SCENIC:single-cellregulatorynetworkinferenceandclustering》。2、《AscalableSCENICworkflowforsingle-cellgeneregulatoryne
- PCL CPC点云分割算法
大鱼BIGFISH
C++PCLCPC点云分割算法
文章目录一、简介二、实现代码三、实现效果参考资料一、简介CPC是PCL库中的一种点云分割算法,主要用于在点云中提取平面(或接近平面的结构)点云。其中,CPC是“ConnectedPlanarComponents”的缩写,它是一种基于连接性和几何特性的方法,用于在点云中分离出多个平面。其计算过程如下所述:1.超体素生成:首先,点云通过SupervoxelClustering被划分成多个超体素。每个超
- 每天一个数据分析题(五百)- 关联规则
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
广为流传的“啤酒与尿布”的故事,其背后的模型实际上是哪一类?A.分类(Classification)B.分群(Clustering)C.关联(Association)D.预测(Prediction)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库
- 【机器学习笔记】12 聚类
RIKI_1
机器学习机器学习笔记聚类
无监督学习概述监督学习在一个典型的监督学习中,训练集有标签,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。无监督学习与此不同的是,在无监督学习中,我们的数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面。主要的无监督学习方法聚类(Clustering)如何将教室里的学生按爱好、身高划分为5类?降维(DimensionalityReductio
- RabbitMQ的高可用机制
辞暮尔尔-烟火年年
消息中间件微服务rabbitmq
RabbitMQ通过多种机制提供高可用性(HA)支持,以确保消息系统的稳定性和可靠性。下面将详细介绍这些机制,并提供代码示例。集群(Clustering)RabbitMQ的集群提供了高可用性和负载均衡。集群中的节点共享同一个Erlang分布式数据库,队列可以在多个节点上进行镜像,以提供冗余。%%加入到集群的命令rabbitmqctljoin_clusterrabbit@镜像队列(MirroredQ
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- open3d 点云聚类dbscan
Mr.Q
open3d聚类python
关键代码:labels=np.array(pcd.cluster_dbscan(eps=0.02,min_points=10,print_progress=True))point_cloud_dbscan_clustering.pyimportopen3daso3dimportnumpyasnpimportmatplotlib.pyplotaspltif__name__=="__main__":#
- 机器学习原型聚类
黄粱梦醒
1.原型聚类原型聚类即“基于原型的聚类”(prototype-basedclustering),原型表示模板的意思,就是通过参考一个模板向量或模板分布的方式来完成聚类的过程,常见的K-Means便是基于簇中心来实现聚类,混合高斯聚类则是基于簇分布来实现聚类。1.2kmeans1.2.1基本原理K-means是一种常见的聚类算法,也叫k均值或k平均。通过迭代的方式,每次迭代都将数据集中的各个点划分到
- data science (part3)
garrulousabyss
csscss3html
1.WhatIsK-MeansClustering?K-meansisanunsupervisedlearningalgorithmusedforproblemshavingtodowithclusteringdata.Itfollowsthesequenceofstepsdescribedbelow:Choosehowmanyclusterstocreateandassignitask.Choo
- 【Leach协议】基于MATLAB中实现的无线传感器网络Leach协议
天天Matlab代码科研顾问
WSNmatlab网络开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍LEACH协议简介LEACH协议(Low-EnergyAdaptiveClusteringHierar
- RocketMQ使用
Chocolyte
mqrocketmqMQ
文章目录简介专业术语消息生产方式生产普通消息可靠同步发送(reliablesynchronous)可靠异步发送(reliableasynchronous)单向发送(one-waytransmission)生产顺序消息分布式事务消息延时发送消息批量发送使用log发送消息消费消费方式pull消费push消费消费类型广播消费(BROADCASTING)集群消费(CLUSTERING)消息过滤标签过滤SQ
- CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.泛化方法:这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。基于正则化的方法:这些方法尝试将所有图像强制到一个类似的特征空间中,通常通过最小化域特定变化等技术来实现。虽然这促进了对具有相似特征的未见过域的泛化,但它可能会限制有效表示不同风格和特征的能力。示例包括使用域对抗训练或不变特征学习的方法。基于差异的方法:这些方法不是强制同质
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- 【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
魔道不误砍柴功
AI大模型人工智能embedding语言模型
什么是嵌入?OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:Search搜索(结果按与查询字符串的相关性排序)Clustering聚类(文本字符串按相似性分组)Recommendations推荐(推荐具有相关文本字符串的条目)Anomalydetection异常检测(识别出相关性很小的异常值)Diversitymeasurement多样性测量(分析相似性分布)Classificatio
- Python中层次聚类的艺术:从原理到实践的全面解析
theskylife
数据挖掘数据分析python聚类机器学习数据挖掘
数据聚类在数据分析领域扮演着重要的角色,它可以帮助我们将相似的数据点分组在一起,揭示数据集的内在结构和模式。层次聚类(HierarchicalClustering)作为一种强大的聚类方法,不仅可以实现数据的分组,还能生成具有层次结构的聚类结果。本文将深入探讨层次聚类的原理,介绍如何在Python中实现层次聚类,并通过实际案例演示其应用。目录写在开头1.层次聚类简介1.1定义和原理1.2层次聚类的两
- 最全的Scanpy教程笔记 Preprocessing and clustering 3k PBMCs
Pandora qiu
scanpy单细胞分析笔记python
最全的Scanpy教程笔记代码来源scanpy的官方教程代码的解释来源web本人也在学习scanpy分析单细胞数据,但是网络上对于scanpy的流程并没有太多详细的解释。这些是我上网搜索的相关解释,仅供参考,不喜勿视。Preprocessingandclustering3kPBMCsimportnumpyasnpimportpandasaspdimportscanpyassc这段代码是使用Pyth
- 机器学习本科课程 实验6 聚类实验
11egativ1ty
机器学习本科课程机器学习聚类人工智能
第一题:使用sklearn的DBSCAN和AgglomerativeClustering完成聚类实验内容:使用sklearn的DBSCAN和AgglomerativeClustering在两个数据集上完成聚类任务对聚类结果可视化对比外部指标FMI和NMI1.导入模块importnumpyasnpimportmatplotlib.pyplotasplt%matplotlibinlineimportw
- 全面解析 Kmeans 聚类算法(Python)
AI科技大本营
算法聚类python机器学习人工智能
作者|泳鱼来源|算法进阶一、聚类简介Clustering(聚类)是常见的unsupervisedlearning(无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。聚类算法可以大致分为传统聚类算法以及深度聚类算法:传统聚类算法主要是根据原特征+基于划分/密度
- 2020李宏毅学习笔记——11.Unsupervised Learning: Linear Methods(无监督学习)
catcous
机器学习基础课程知识机器学习深度学习神经网络
文章目录摘要1.Introduction(介绍)2.Clustering(聚类)2.1K-means2.2HAC3.DimensionReduction(降维)3.1HowtodoDimensionReduction?3.2PCA算法(Principlecomponentanalysis)3.2.1基于最大方差原理1.PCAfor1-D2.PCAforn-D3.2.2基于最小化误差原理3.2.3从
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要