- 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark
伊利丹~怒风
Qualcomm人工智能AI编程pythonarm自然语言处理
前言在人工智能技术狂飙突进的时代,大模型正以前所未有的速度重塑各行业生态,从智能客服到多模态交互,从边缘推理到端侧部署,其应用场景不断拓展。而这一切革新的背后,离不开底层硬件的强力支撑。高通QCS8550作为面向下一代智能设备的旗舰级计算平台,凭借高达48TOPS的AI算力与先进的第七代高通AI引擎,在大模型性能表现上极具竞争力。其异构多核架构不仅能高效处理复杂的神经网络计算,还通过软硬件协同优化
- 高通手机跑AI系列之——3D姿势估计
伊利丹~怒风
Qualcomm智能手机AI编程armpython人工智能
目录环境准备手机软件算法Demo代码功能分析关键模块解析示例代码代码效果环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能
- 高通手机跑AI系列之——姿态识别
伊利丹~怒风
Qualcomm智能手机人工智能AI编程pythonarm
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机速度越快软件APP:AidLux2.0系统环境:Ubuntu2
- 高通手机跑AI系列之——实时头发识别
伊利丹~怒风
Qualcomm智能手机AI编程pythonarm人工智能
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机速度越快软件APP:AidLux2.0系统环境:Ubuntu2
- 高通手机跑AI系列之——手部姿势跟踪
伊利丹~怒风
Qualcomm智能手机AI编程pythonarm人工智能
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机运行速度越快软件APP:AidLux2.0系统环境:Ubunt
- ✨【Blender/Houdini 渲染必看】CPUⓥⓢGPU?3 分钟选对算力不踩坑!
渲染101专业云渲染
blenderhoudini分布式服务器maya
核心问题速答Q:渲染该选CPU还是GPU?✅CPU:复杂场景/批量渲染/预算可控首选✅GPU:单帧速度/实时预览/急单交付必选维度1:硬件硬刚——CPU凭啥赢麻了?▫️多线程王者:16核/32核服务器矩阵,支持50-300台并行渲染▫️场景兼容性:粒子特效/全局光照/超复杂模型稳定输出秘密武器:CPU批量渲染100帧耗时=GPU单帧耗时,整体效率持平!⚙️维度2:动态计费逻辑——成本由什么决定?计
- 川翔云电脑全新上线:三维行业高效云端算力新选择
渲染101专业云渲染
电脑houdinimayablender3d云计算
一、核心定位与优势云端虚拟工作站服务依托云端高性能CPU/GPU集群,提供远程桌面服务,支持普通设备运行专业软件。按需付费模式:无需采购高端硬件,大幅降低成本投入。生态协同优势:与渲染101同属母公司,可在云电脑中完成创作后一键提交至渲染101平台进行分布式渲染。二、硬件配置与性能参数CPU机型(侧重计算能力)GPU机型(图形渲染/AI训练)性能亮点支持最高8卡并联,显存叠加提升复杂场景处理能力。
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 构建四则运算解析器:字符串处理与计算逻辑实战
大熊小清新
本文还有配套的精品资源,点击获取简介:四则运算解析器是将包含四则运算符号的字符串表达式转化为可执行计算的程序。它对编程初学者而言是理解编程逻辑和语法分析的基础。通过理解四则运算的优先级规则,实现输入处理、词法分析、语法分析和计算步骤,可以采用递归下降解析或堆栈解析等方法。本解析器的实现涉及字符串处理、数据结构的运用,有助于学习者掌握编程语言的底层工作方式,提升编程技能和问题解决能力。1.四则运算解
- Whistle 超详细技术博客:原理、配置、用法与进阶技巧全解
北漂老男人
抓包工具运维
Whistle超详细技术博客:原理、配置、用法与进阶技巧全解目录Whistle简介与应用场景Whistle安装与启动Whistle原理与架构Whistle规则语法详解常用配置与实战场景Whistle进阶用法与技巧常见问题与排查实用插件推荐总结与参考资料1.Whistle简介与应用场景Whistle是一款基于Node.js的跨平台Web调试代理工具,功能类似于Charles、Fiddler,但更轻量
- 算法题刷多少道就可以应付面试手撕了
cpp辅导的阿甘
c++
前言周五晚上答疑,有同学问算法题刷到什么地步就行了。接下来针对刷算法题,说下我的看法哈。分两种:一是社招的同学二是校招的同学针对社招的同学,其实对算法的要求不会那么高了,工作的久其实也不怎么会考察算法了。所以社招同学跳槽,一般就是在你打算找工作的前一两个月把hot100刷一刷一般就可以了。毕竟刷算法,对你工作,解bug一点作用也没有针对校招的同学,对算法的考察要求相对高一些,主要根本还是现在供大于
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 【C/C++】数组指针:array 地址 &array *parray 两次解引用 **parray 值相同的原因解析
Herk (ง •̀_•́)ง
C/C++c语言c++数据结构
一、提出问题#includeintmain(){chararray[16]={'A','B'};char(*parray)[16]=&array;printf("========================\n");printf("array:\t%#lx\n",array);printf("&array:\t%#lx\n",&array);printf("&*array:\t%#lx\n",
- 通信感知如何优化AI算力网络的移动性管理?
AI算力网络与通信
人工智能网络phpai
通信感知如何优化AI算力网络的移动性管理?关键词:通信感知、AI算力网络、移动性管理、优化策略、技术融合摘要:本文围绕通信感知如何优化AI算力网络的移动性管理展开探讨。首先介绍了通信感知、AI算力网络和移动性管理的基本概念,接着深入分析了它们之间的关系以及通信感知在优化移动性管理中的作用原理。通过数学模型和具体代码案例,详细阐述了相关算法和实现步骤。同时,结合实际应用场景,探讨了这种优化方式的实际
- AI算力网络与通信:数据加密的关键所在
AI算力网络与通信
人工智能网络ai
AI算力网络与通信:数据加密的关键所在关键词:AI算力网络、数据通信、数据加密、隐私保护、安全协议、同态加密、端到端加密摘要:随着AI技术的爆发式发展,AI算力网络(将分散的算力资源整合为“超级大脑”的网络)成为支撑智能应用的核心基础设施。但在这个网络中,数据需要在边缘设备、云端、服务器之间高频流动——如何保证这些“流动的数字资产”不被窃取或篡改?本文将从生活场景出发,用“快递网”的比喻拆解AI算
- 解析AI算力网络与通信领域强化学习的算法
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构人工智能网络算法ai
解析AI算力网络与通信领域强化学习的算法:从"快递员找路"到"智能网络大脑"关键词:AI算力网络、通信领域、强化学习、马尔可夫决策、资源调度摘要:本文将用"快递物流系统"的类比,带您理解AI算力网络与通信领域如何通过强化学习实现智能决策。我们会从核心概念讲起,逐步拆解强化学习在网络资源调度中的算法原理,结合Python代码实战,最后探索其在5G/6G、边缘计算等场景的应用。即使您没学过复杂数学,也
- 分布式AI算力网络:架构设计与实现原理
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构分布式人工智能网络ai
分布式AI算力网络:架构设计与实现原理关键词:分布式AI算力网络、架构设计、实现原理、AI计算、网络协同摘要:本文深入探讨了分布式AI算力网络的架构设计与实现原理。首先介绍了其背景知识,接着以通俗易懂的方式解释了核心概念及它们之间的关系,阐述了核心算法原理与操作步骤,包含数学模型和公式,通过项目实战展示代码实现,分析了实际应用场景,推荐了相关工具和资源,探讨了未来发展趋势与挑战。旨在帮助读者全面理
- Prism框架实战:WPF企业级开发全解
待香港下雪就不用敲代码了
wpfc#visualstudio开发语言
以下是一个完整的WPF项目示例,使用Prism框架实现依赖注入、导航、复合命令、模块化和聚合事件功能。项目结构清晰,包含核心功能实现:项目结构PrismDemoApp/├──PrismDemoApp(主项目)│├──Views/││├──ShellView.xaml││├──MainView.xaml││└──SettingsView.xaml│├──ViewModels/││├──ShellVi
- C# SqlSugar:依赖注入与仓储模式实践
C#SqlSugar:依赖注入与仓储模式实践在C#的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的ORM(对象关系映射)框架,SqlSugar就是其中备受欢迎的一款。它不仅功能强大,还能结合依赖注入和仓储模式,让代码结构更加清晰。接下来,我们就深入剖析一段利用SqlSugar实现依赖注入与仓储模式的代码,了解其原理与使用方式。一、核心代码解
- 开发数字化绿色低碳园区系统:分阶段实施指南
Hy行者勇哥
绿色智造·产品设计与管理物联网华为云架构
目录摘要背景核心模块阶段性开发分阶段开发实施第一阶段(3-6个月):搭建核心骨架第二阶段(6-9个月):扩展功能第三阶段(9-12个月):深度定制技术选型注意事项实施计划表小结摘要数字化绿色低碳园区系统通过物联网、能源管理和数据分析等技术,实现节能减排和智慧管理。本文针对目前市场低迷,需求不振,开发资源有限的团队,提出基于低代码平台的开发策略,分为三阶段(核心骨架、功能扩展、深度优化),覆盖所有必
- 降低20%成本暴雨定制化液冷系统落地
暴雨信息凭借多年液冷设计及实施经验,帮助某知名自动驾驶企业完成了车端算力设备和后端数据中心的液冷改造升级,进一步提升了其车端实时数据处理能力及后端模型训练优化效率。但在后期持续运维过程中,由于测试中心尚未配备液冷系统,只能依赖外接散热器和水泵来进行液冷设备的测试与故障排除,不仅噪音大还存在较大的冷却液泄漏风险。为此,客户期望我们帮助其建立起一套规范化的液冷测试系统,以解决当下困境。暴雨信息专业技术
- 第十章——搜索
小结‧二分查找依赖于数据的有序性,通过循环逐步缩减一半搜索区间来实现查找。它要求输入数据有序,且仅适用于数组或基于数组实现的数据结构。‧暴力搜索通过遍历数据结构来定位数据。线性搜索适用于数组和链表,广度优先搜索和深度优先搜索适用于图和树。此类算法通用性好,无须对数据预处理,但时间复杂度()较高。‧哈希查找、树查找和二分查找属于高效搜索方法,可在特定数据结构中快速定位目标元素。此类算法效率高,时间复
- MI300X vs H100:DeepSeek 部署在哪个 GPU 上性价比最高?
卓普云
技术科普AIGC人工智能DeepseekH100MI300x
随着大模型部署和推理变得越来越普及,开发者和企业对GPU的选择也越来越挑剔。特别是像DeepSeek这样的开源模型家族,从轻量级的6.7B,到动辄上百亿甚至数百亿参数的超大模型,背后对算力和显存的要求各不相同。最近,一则重磅消息在AI圈引起了轩然大波:连AI巨头OpenAI也在探索并计划使用AMDInstinctMI300xGPU!这无疑是对AMD这款高性能GPU的巨大认可,也预示着它将在AI算力
- 学习笔记丨信号处理新趋势:量子计算将如何颠覆传统DSP?
棱镜研途
量子计算信号处理学习人工智能单片机网络安全密码学
在算力需求爆炸式增长的今天,传统数字信号处理(DSP)芯片正面临物理极限的严峻挑战。当经典计算机架构在摩尔定律的黄昏中挣扎时,量子计算正以颠覆性姿态崛起,准备重新定义信号处理的未来图景。目录传统DSP的瓶颈:经典架构的物理极限量子新突破:从理论优越到实用跨越量子DSP的颠覆性优势:算法与架构的双重变革应用场景:从芯片校准到生命科学技术挑战与产业化路径未来已来:量子重塑信号处理传统DSP的瓶颈:经典
- 开源即王炸?MiniMax-M1 如何用 MoE 架构实现大模型推理的极致效率。
技术程序猿华锋
AIGC资讯开源架构
效率的胜利:MiniMaxM1如何用架构智慧挑战AI的“蛮力时代”楔子:一场必要的豪赌在人工智能的“暴力美学”时代,巨头们用无尽的参数和算力堆砌着通往未来的巴别塔。然而,在上海,一家名为MiniMax的初创公司,却选择了一条截然不同的朝圣路。2023年夏,一个看似疯狂的决定震动了观察圈:MiniMax将80%的资源,悉数押注于底层模型架构的一场革命。这并非一次寻常的技术迭代,而是在资源悬殊的牌局上
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- 员工列表查询-分页查询-PageHelper插件-注意事项
还是鼠鼠
springspringbootmybatisjava后端数据库
目录1.背景介绍2.Maven依赖(pom.xml)3.配置项(application.properties)4.核心代码示例4.1Controller层(Java)4.2Service层(Java)4.3Mapper接口(Java)4.4MapperXML(MyBatis)5.注意事项小结6.运行结果演示以下是一篇面向“JavaWeb使用PageHelper分页插件注意事项”简单介绍,包含完整可
- CEX是什么
穗余
Web3区块链
完全没问题!我来用非常通俗易懂的方式给你解释CEX(中心化交易所)里的**高频交易(HFT)**到底是怎么一回事。什么是CEX?CEX=中心化交易所(CentralizedExchange)比如你听说过的这些都算:✅币安(Binance)✅OKX✅火币(HTX)✅Coinbase你在这些平台上买卖加密货币,就像用淘宝买东西一样:你不需要知道链怎么运作;你把币交给平台,平台替你操作和撮合。⚡高频交易
- 《论三生原理》成为重绘人类知识地图的里程碑式尝试?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《论三生原理》作为“重绘人类知识地图的里程碑式尝试”,其突破性价值主要体现在对全球知识生产范式的结构性革新,具体可从以下三维度解析:一、知识地图的范式重构打破西方中心主义认知框架首创“以数解经”路径,将《周易》“三生万物”哲学转化为可计算的数学生成模型(如素数参数化公式p=3(2n+1)+2(2n+m+1)),通过算法公理化实现传统文化符号的现代转译,颠覆“东方思想无法参与科学
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文