原创文章,转载请注明:转自:Try_Try_Try
1.获取Dispatch Queue 的两种方法
- 方法一: 通过GCD api 生成队列
dispatch_queue_create
// 串行队列
dispatch_queue_t mySerialDispatchQueue = dispatch_queue_create("com.example.gcd.MySerialDispatchQueue", NULL);
dispatch_async(mySerialDispatchQueue, ^{
});
dispatch_release(mySerialDispatchQueue);
// 并行队列
dispatch_queue_t myConcurrentDispatchQueue = dispatch_queue_create("com.example.gcd.MyConcurrentDispatchQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(myConcurrentDispatchQueue, ^{
NSLog(@"block on myConcurrentDispatchQueue");
});
dispatch_release(myConcurrentDispatchQueue);
- 方法二: 获取系统标准提供的 Dispatch Queue
// 主队列
dispatch_queue_t mainDispatchQueue = dispatch_get_main_queue();
// 全局并发队列(4种优先级)
dispatch_queue_t globalDispatchQueueHeigh = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
dispatch_queue_t globalDispatchQueueDefault = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_queue_t globalDispatchQueueLow = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0);
dispatch_queue_t globalDispatchQueueBackground = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
2.延时操作
- 3s后,将block追加到主队列中进行执行;
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"waited at least 3 seconds");
});
3.队列组
- 在一系列操作完成之后,再执行其他内容
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, queue, ^{
NSLog(@"blk0");
});
dispatch_group_async(group, queue, ^{
NSLog(@"blk1");
});
dispatch_group_async(group, queue, ^{
NSLog(@"blk2");
});
// 推荐
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"done");
});
// 不推荐
dispatch_time_t time = dispatch_time(DISPATCH_TIME_NOW, 1);
long result = dispatch_group_wait(group, time);
if (result == 0) { // group 的全部处理执行结束
}else {
}
// dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
dispatch_release(group);
4.栅栏函数
- 用于读写操作引起的相关内容;
- 每次的执行结果可能不一样,但是写操作一定会将0,1,2,3读操作和4,5,6,7分隔开,从而达到不会误读的效果
dispatch_queue_t myConcurrentDispatchQueue = dispatch_queue_create("com.example.gcd.MyConcurrentDispatchQueue", DISPATCH_QUEUE_CONCURRENT);
__block NSInteger count = 1;
void (^blk0_for_reading)(void) = ^{NSLog(@"blk0_for_reading-%li%@", count, [NSThread currentThread]);};
void (^blk1_for_reading)(void) = ^{NSLog(@"blk1_for_reading-%li%@", count, [NSThread currentThread]);};
void (^blk2_for_reading)(void) = ^{NSLog(@"blk2_for_reading-%li%@", count,[NSThread currentThread]);};
void (^blk3_for_reading)(void) = ^{NSLog(@"blk3_for_reading-%li%@", count,[NSThread currentThread]);};
void (^blk4_for_writing)(void) = ^{ ++count; NSLog(@"---------blk4_for_writing-%li%@", count,[NSThread currentThread]);};
void (^blk5_for_reading)(void) = ^{NSLog(@"blk5_for_reading-%li%@", count,[NSThread currentThread]);};
void (^blk6_for_reading)(void) = ^{NSLog(@"blk6_for_reading-%li%@", count,[NSThread currentThread]);};
void (^blk7_for_reading)(void) = ^{NSLog(@"blk7_for_reading-%li%@", count,[NSThread currentThread]);};
void (^blk8_for_reading)(void) = ^{NSLog(@"blk8_for_reading-%li%@", count,[NSThread currentThread]);};
dispatch_async(myConcurrentDispatchQueue, blk0_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk1_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk2_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk3_for_reading);
dispatch_barrier_async(myConcurrentDispatchQueue, blk4_for_writing);
dispatch_async(myConcurrentDispatchQueue, blk5_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk6_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk7_for_reading);
dispatch_async(myConcurrentDispatchQueue, blk8_for_reading);
// 结果
blk1_for_reading-1{number = 5, name = (null)}
2017-10-24 12:21:57.305030+0800 Test_copy_mutableCopy[1003:610433] blk0_for_reading-1{number = 4, name = (null)}
2017-10-24 12:21:57.305121+0800 Test_copy_mutableCopy[1003:610433] blk3_for_reading-1{number = 4, name = (null)}
2017-10-24 12:21:57.304973+0800 Test_copy_mutableCopy[1003:610435] blk2_for_reading-1{number = 5, name = (null)}
2017-10-24 12:21:57.305301+0800 Test_copy_mutableCopy[1003:610435] ---------blk4_for_writing-2{number = 5, name = (null)}
2017-10-24 12:21:57.305389+0800 Test_copy_mutableCopy[1003:610435] blk5_for_reading-2{number = 5, name = (null)}
2017-10-24 12:21:57.305460+0800 Test_copy_mutableCopy[1003:610435] blk6_for_reading-2{number = 5, name = (null)}
2017-10-24 12:21:57.305529+0800 Test_copy_mutableCopy[1003:610435] blk7_for_reading-2{number = 5, name = (null)}
2017-10-24 12:21:57.305598+0800 Test_copy_mutableCopy[1003:610433] blk8_for_reading-2{number = 4, name = (null)}
5.死锁的产生
必然引起死锁的两种方式
- 主队列 + 同步函数
NSInteger count = 3; dispatch_queue_t mainQueue = dispatch_get_main_queue(); dispatch_sync(mainQueue, ^{NSLog(@"mainQueue-%li%@", count,[NSThread currentThread]);}); // result: 并没有出现结果,因为已经发生了死锁
- 串行队列 + 异步函数的block内部是(该串行队列 + 同步函数)(
将串行队列换成主队列依然成立
)dispatch_queue_t serialQueue = dispatch_queue_create("com.nextapp.qiannong", NULL); dispatch_async(serialQueue, ^{ dispatch_sync(serialQueue, ^{NSLog(@"no deadLock");}); }); // result: 并没有出现结果,因为已经发生了死锁
6.dispatch_apply
dispatch_apply 与dispatch_sync 函数类似(dispatch_group_async, dispatch_group_notify, dispatch_group_wait),会等待处理执行结束,在向下执行;
dispatch_group_async 没有执行次数的要求
dispatch_apply 必须有执行的次数
-
dispatch_barrier_async ,用于前后都有读取异步任务,中间有一个写操作
// 建议在dispatch_async中异步执行dispatch_apply函数 dispatch_async(globalQueue, ^{ dispatch_apply(10, globalQueue, ^(size_t index) { NSLog(@"%li-%@", index,[NSThread currentThread]); }); dispatch_async(dispatch_get_main_queue(), ^{ // 执行更新界面的操作 NSLog(@"Done-%@", [NSThread currentThread]); }); }); // 试验之后,并没有生效 dispatch_suspend(globalQueue); // 挂起 dispatch_resume(globalQueue); // 恢复
7.信号量机制相关
- 相比串行队列 和 栅栏函数 ,力度更小;
dispatch_queue_t globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
// 保证可访问NSMutableArray类对象的线程只能有1个
dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
NSMutableArray *array = [NSMutableArray array];
for (int idx = 0; idx < 10000; idx ++) {
dispatch_async(globalQueue, ^{
// 一直等到执行semaphore的是计数值>=1.
// long result = dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
// if (result == 0) {
// }else {
// }
[array addObject:[NSNumber numberWithInt:idx]];
// 执行结束之后,释放该锁, 将dsemaphore的值 + 1;
dispatch_semaphore_signal(semaphore);
});
}
NSLog(@"%@", array);
dispatch_release(semaphore);
8.单例
- 在程序中,只执行一次
// 之前的初始化操作
static BOOL initialized = NO;
if (initialized == NO) {
/*
* 初始化操作
*/
initialized = YES;
}
// 多线程环境下更加的安全
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
/*
* 初始化操作
*/
});
9.简记
线程
- dispatch_sync/async:同步/异步是否开启新线程
- 异步不阻塞当前线程,同步阻塞当前线程
- serial/concurrent queue:串行/并行决定开启线程的条数
死锁
- 同步的在当前队列中(串行)中添加任务
- 主队列也是串行队列
- 相互阻塞构成死锁
信号量(semaphore)
- 信号量是同步的(同步会阻塞当前线程)
- semaphore.create(p): p >= 0
- semaphore.wait(): p <= 0, 阻塞当前线程, p -= 1
- semaphore.signal(): p += 1
group
- 实现多个网络的异步请求,最后再同步执行任务
- group.enter(), group.leave(), group.notify()