课程作业的一个题目,找了代码加了注释。
import numpy as np
import cv2
class Stitcher:
def stitch(self, images, ratio=0.75, reprojThresh=4.0,
showMatches=False):
# 检测出关键点,局部不变描述符
(imageB, imageA) = images
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
print("关键点个数",len(kpsA),len(kpsB))
# 特征匹配
M = self.matchKeypoints(kpsA, kpsB,
featuresA, featuresB, ratio, reprojThresh)
# 如果特征匹配返回None
if M is None:
return None
# 将图像粘合在一起
(matches, H, status) = M
# 根据单应性矩阵进行矫正图片
result = cv2.warpPerspective(imageA, H,
(imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
# imageA.shape[1]=400,imageB.shape[1]=400,imageA.shape[0]=533
# result.shape[0]=533,result.shape[1]=800
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# 显示匹配线
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
return (result, vis)
# 单独返回一个
return result
#接收照片,检测关键点和提取局部不变特征
#用到了高斯差分(Difference of Gaussian (DoG))关键点检测,和SIFT特征提取
#detectAndCompute方法用来处理提取关键点和特征
#返回一系列的关键点
def detectAndDescribe(self, image):
# 将图片转化为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 提取特征点
descriptor = cv2.xfeatures2d.SIFT_create()
(kps, features) = descriptor.detectAndCompute(image, None)
# print(kps) # 关键点
print(features.shape[0],features.shape[1]) # 长度为128维的特征向量
# 将关键点的坐标pt存入numpy
kps = np.float32([kp.pt for kp in kps])
return (kps, features)
#matchKeypoints方法需要四个参数,第一张图片的关键点和特征向量,第二张图片的关键点特征向量。
#David Lowe’s ratio测试变量和RANSAC重投影门限也应该被提供。
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2) # 最近邻算法设置K=2
matches = []
# for m in rawMatches:
# print(m[0].distance,m[1].distance)
print("------------------------------")
# 循环遍历匹配点
for m in rawMatches:
# Lowe’s ratio测试,用来确定高质量的特征匹配
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
# 将第一张图像的下标值和第二张图像的下标值存入
matches.append((m[0].trainIdx, m[0].queryIdx))
# print(matches)
# print(len(matches))
# 将标注位置存入numpy
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# 计算单应性矩阵
# 其中H为求得的单应性矩阵矩阵
# status则返回一个列表来表征匹配成功的特征点。
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
return (matches, H, status)
return None
#连线画出两幅图的匹配
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
# 三通道照片
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
for ((trainIdx, queryIdx), s) in zip(matches, status):
if s == 1:
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
return vis
if __name__ == '__main__':
# 加载图片
imageA = cv2.imread('./hw2/building_02.jpg')
imageB = cv2.imread('./hw2/building_03.jpg')
# 调整图片宽度
# imageA = imutils.resize(imageA, width=400)
# imageB = imutils.resize(imageB, width=400)
# showMatches=True 展示两幅图像特征的匹配,返回vis
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
# vis = imutils.resize(imageA, width=800,height=800)
# result = imutils.resize(imageB, width=800,height=800)
cv2.imwrite('./vis1.jpg', vis)
cv2.imwrite('./result.jpg', result)
https://www.cnblogs.com/lqerio/p/11601951.html
https://blog.csdn.net/weixin_44072651/article/details/89262277
https://x-nicolo.github.io/2017/09/19/%E5%9F%BA%E4%BA%8EOpenCV%E5%85%A8%E6%99%AF%E6%8B%BC%E6%8E%A5%EF%BC%88Python%EF%BC%89/
https://blog.csdn.net/xull88619814/article/details/81587595