- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 阿里重磅开源 Mnn3dAvatar:3D 数字人实时面捕,直播带货新利器!
Icoolkj
人工智能开源mnn3d
阿里巴巴于近日有了重磅之举——开源全新的3D数字人框架Mnn3dAvatar。这一框架犹如一颗投入平静湖面的巨石,为开发者们带来了强大的实时面部捕捉与3D虚拟角色生成工具,凭借其显著的高效性与易用性,极有可能为直播带货、虚拟展示等场景带来翻天覆地的变革。Mnn3dAvatar基于阿里巴巴开源的轻量级深度学习推理框架MNN(MobileNeuralNetwork)开发而成。与传统的Live2D技术不
- MNN 支持 InternVL 多模态大模型
夕阳叹
mnn深度学习人工智能LLM
MNN支持InternVL多模态大模型1.背景介绍InternVL(https://modelscope.cn/models/OpenGVLab/InternVL2_5-1B)是一个多模态模型,结合了视觉和语言处理能力,适用于图像理解、视觉问答等任务,相比QwenVL更为轻量。为了使InternVL模型能够在MNN(MobileNeuralNetwork)推理框架中高效运行,我们对其进行了适配和优
- Linux下编译并打包MNN项目迁移至其他设备
AI小小怪
Linux系统常用包的编译MTCNNlinuxmnnopencv
1.构建项目结构该项目是利用MNN框架对MTCNN网络进行推理,实现对目标的实时检测运行环境:Linux相关库:opencv,MNN先给出项目的总体结构,如下:mtcnn_mnn/├──include/│├──opencv2/#OpenCV的头文件│├──MNN/#MNN的头文件│└──mtcnn.h#项目内部的头文件├──lib/│├──libopencv_core.so#OpenCV的动态库│
- 构建 PyMNN
dbcccccsds
pythonpip
编译MNN前的准备工作请参考原文:编译MNN构建PyMNN✅本地安装cd/path/to/MNN/pymnn/pip_package#构建依赖pythonbuild_deps.py{MNN依赖包组合}#示例:pythonbuild_deps.py"cuda,render,no_sse"#安装PyMNNpythonsetup.pyinstall--version{MNN版本}--deps{MNN依赖
- RK3588 MNN CPU/Vulkan/OpenCL ResNet50推理测试
Hi20240217
学习mnn人工智能深度学习RK3588
RK3588MNNCPU/Vulkan/OpenCLResNet50推理测试一、背景介绍1.1RK3588芯片特性1.2为什么选择MNN?1.3测试目标解析二、参考链接三、操作步骤3.1Vulkan环境搭建3.2安装OpenCL环境3.3Vulkan运行`relu`算子3.3.1安装`glslang-tools`3.3.2编写计算着色器(`relu.comp`)3.3.3生成C++代码(`main
- 轻量级高性能推理引擎MNN 学习笔记 02.MNN主要API
龙湾开发
轻量级高性能推理引擎MNN学习笔记mnn学习笔记人工智能机器学习
1.MNN主要API注意:本学习笔记只介绍了我在学习过程中常用的API,更多MNNAPI请参考官方文档。1.1.推理时操作流程创建Interpreter:createFromFile()通过Interpreter创建Session:createSession()设置输入数据:getSessionInput()、map()、unmap()、copyFromHostTensor()通过Session进
- 2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
我的青春不太冷
mnn人工智能深度学习ncnn在线模型转换网址
文章目录引言最新网址地点一、模型转换1.框架转换全景图2.安全的模型转换3.网站全景图二、转换说明三、模型转换流程图四、感谢引言在yolov5,yolov8,yolov11等等模型转换的领域中,时间成本常常是开发者头疼的问题。最近发现一个超棒的网站工具,简直是模型转换的神器。它最大的亮点就是省去编译转换工具的时间,开箱即用,一键转换。对于目标格式,提供了tengine、ncnn、mnn、onnx等
- 排列组合数的一些公式
wuming先生
绪论:加法原理、乘法原理#分类计数原理:做一件事,有nn类办法,在第11类办法中有m1m1种不同的方法,在第22类办法中有m2m2种不同的方法,…,在第nn类办法中有mnmn种不同的方法,那么完成这件事共有N=m1+m2+…+mnN=m1+m2+…+mn种不同的方法。分步计数原理:完成一件事,需要分成nn个步骤,做第11步有m1m1种不同的方法,做第22步有m2m2种不同的方法,…,做第nn步有m
- NCNN GPU初始化加速——cache实现
陈立里
ncnn
概要NCNN的CPU初始化速度很快,但是当使用GPU进行推理时,初始化往往要花费几秒甚至更长时间。其他框架例如MNN有载入cache的方式来进行加速,NCNN目前没有相关接口来实现加速,那么NCNN是否也可以加载cache来实现加速呢?整体流程通过测速以及查看NCNN的源码可以发现,在gpu.cpp源文件下的VulkanDevice::create_pipeline函数内的vkCreateComp
- 手写数字识别从训练到部署全流程详解——模型在Android端的部署
彧侠
综述:目前深度学习模型在移动端的使用已越来越广泛,而移动端设备的性能表现自然无法与PC端相提并论,目前市面上基本所有的训练框架训练出来的模型都无法直接在移动端上使用和推理,尽管部分框架同时做了移动端部署功能(如Tensorflow-lite、pytorch-mobile等),但是在性能表现上对比专业的部署框架(如ncnn、mnn等)没有任何优势,基于之前对部署框架的使用经验,下面我就以手写数字识别
- 【深度学习】MNN ImageProcess处理图像顺序,逻辑,均值,方差
XD742971636
深度学习机器学习深度学习mnnImageProcess
文章目录介绍Opencvnumpy等效的MNN处理介绍MNNImageProcess处理图像是先reisze还是后resize,均值方差怎么处理,是什么通道顺序?这篇文章告诉你答案。Opencvnumpy这段代码是一个图像预处理函数,用于对输入的图像进行一系列处理,以便将其用于某些机器学习模型的输入。cv2.imdecode(np.fromfile(imgpath,dtype=np.uint8),
- VS CMAKE链接MNN静态库,使用pybind11生成python接口
qizhen816
pybind11的使用教程已经有很多了,参考https://zhuanlan.zhihu.com/p/93299698,建议使用vcpkg安装pybind11pybind11:x64-windows-static等等库我的接口形式为voidface_handler(py::module&m){py::class_(m,"RFInfer").def(py::init()).def("__call__
- MNN编译android版本脚本
yuhongjiu
#!/bin/bash./schema/generate.shexportANDROID_NDK="/home/yw/android_ndk/android-ndk-r18b"rm-rfbuild_androidmkdirbuild_androidcdbuild_androidfunctionbuild_android{mkdir$PREFIXcd$PREFIXcmake../../../-DCM
- 鸿蒙使用第三方SO库
neo_尼欧
HarmonyOSOpenharmonyOpenHarmonyharmonyosHAP
一、示例:使用第三方SO库以导入OpenCV和MNN的SO库为例1、将MNN和Opencv的so文件(包括.407文件),放入模块下libs目录对应的版本(arm64-v8a和armeabi-v7a)entry/libs/arm64-v8a/xxx.so2、配置模块目录下的build-profile.json5的buildOption字段,增加abiFilters字段:"buildOption":
- 大模型内容分享(二十八):mnn-llm: 大语言模型端侧CPU推理优化
之乎者也·
大模型(FoundationModel)内容分享AI(人工智能)内容分享mnn语言模型人工智能
在大语言模型(LLM)端侧部署上,基于MNN实现的mnn-llm项目已经展现出业界领先的性能,特别是在ARM架构的CPU上。目前利用mnn-llm的推理能力,qwen-1.8b在mnn-llm的驱动下能够在移动端达到端侧实时会话的能力,能够在较低内存(<2G)的情况下,做到快速响应。目录背景模型导出模型部署性能优化性能测试总结与展望项目代码团队介绍背景在大型语言模型(LLM)领域的迅猛发展背景下,
- [MNN]vs2019编译MNN x86
FL1623863129
深度学习mnnc++人工智能
打开开始编译cd/path/to/MNNmkdirbuild&&cdbuildcmake-G"NMakeMakefiles"-DCMAKE_BUILD_TYPE=Release..nmake
- 香橙派--编译MNN报错,关于汇编的嵌套展开
lindsayshuo
mnn汇编人工智能
先看报错:/home/orangepi/MNN-master/source/backend/cpu/arm/arm64/bf16/ARMV86_MNNPackedMatMulRemain_BF16.S:158:Fatalerror:macrosnestedtoodeeply再看代码:PostTreatLH8:FMAXv9,v15,v16,v17,v18FMAXv9,v19,v20,v21,v22F
- mnn-llm: 大语言模型端侧CPU推理优化
阿里巴巴淘系技术团队官网博客
mnn语言模型人工智能深度学习机器学习
在大语言模型(LLM)端侧部署上,基于MNN实现的mnn-llm项目已经展现出业界领先的性能,特别是在ARM架构的CPU上。目前利用mnn-llm的推理能力,qwen-1.8b在mnn-llm的驱动下能够在移动端达到端侧实时会话的能力,能够在较低内存(<2G)的情况下,做到快速响应。背景在大型语言模型(LLM)领域的迅猛发展背景下,开源社区已经孵化了众多优异的LLM模型。这些模型在自然语言处理的各
- 探索模块化神经网络在现代人工智能中的功效和应用
无水先生
NLP高级和ChatGPT人工智能人工智能神经网络深度学习
一、介绍在快速发展的人工智能领域,模块化神经网络(MNN)已成为一项关键创新。与遵循整体方法的传统神经网络架构不同,MNN采用分散式结构。本文深入探讨了MNN的基础知识、它们的优势、应用以及它们带来的挑战。@evertongomede在人工智能领域,模块化神经网络证明了协作智能的力量,体现了整体大于部分之和的原则。二、了解模块化神经网络模块化神经网络代表了神经网络设计的范式转变。核心思想是将复杂问
- 移动端模型部署框架
落花逐流水
pytorch实践人工智能pytorch
移动端模型部署框架1.MNN整体特点轻量性通用性高性能易用性架构设计主体工具致谢移动端模型部署框架1.MNNhttps://www.yuque.com/mnn/cn/aboutMNN是全平台轻量级高性能深度学习引擎,广泛支持了阿里巴巴在计算机视觉、语音识别技术、自然语言处理等领域的70多个AI应用场景,包含淘宝搜索、拍立淘、淘宝直播、AR导购等,日调用量达十亿量级。
- Microsoft C++ 异常: std::length_error,位于内存位置 0x000000AF9B7AF810 处
AI视觉网奇
c++入门宝典c++
mnn运行报错:0x00007FFCFD1C4ED9处(位于mnn_yolo.exe中)有未经处理的异常:MicrosoftC++异常:std::length_error,位于内存位置0x000000AF9B7AF810处。原因:release库,选择运行库模式mtd,这时需要引用debug库,但是运行会报错。解决方法:release,运行库需要设置成mt或者mddebug,运行库需要设置为MTd
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- conan入门(二十九):对阿里mnn进行Conan封装塈conans.CMake和conan.tools.cmake.CMake的区别
10km
conandeeplearningmnnconanconanfile.pyaarch64cmake
去年写过一篇博客《conan入门(十九):封装第三方开源库cpp_redis示例》,当时通过自己写conanfile.py,实现了对第三方库cpp_redis的conan封装。当时使用的conan1.45.0时过一年多,conan版本也经过了很多次升级,最新的版本是2.x,不过为了保持兼容现在我使用的版本是1.60.0conans.CMakeVSconan.tools.cmake.CMake当时使
- Int8量化算子在移动端CPU的性能优化
阿里巴巴淘系技术团队官网博客
性能优化
本文介绍了DepthwiseConvolution的Int8算子在移动端CPU上的性能优化方案。ARM架构的升级和相应指令集的更新不断提高移动端各算子的性能上限,结合数据重排和Sdot指令能给DepthwiseConv量化算子的性能带来较大提升。背景MNN对ConvolutionDepthwiseInt8量化算子在ARMV8(64位)和ARMV8.2上的性能做了较大的优化,主要优化方法包括改变数据
- pth转onnx转mnn bug总结
三寸光阴___
MNN网络结构
pytorch版yolov3转onnx样例importtorchimporttorchvisionimportnumpyasnpfromonnxruntime.datasetsimportget_exampleimportonnxruntimefromonnximportshape_inferenceimportonnximportosfrommodelsimport*img_size=416cf
- 深度学习可视化工具:Netron
泠山
深度学习深度学习人工智能
Netron是一个用于神经网络、深度学习和机器学习模型的可视化工具。Netron支持ONNX、TensorFlowLite、Caffe、Keras、Darknet、PaddlePaddle、ncnn、MNN、CoreML、RKNN、MXNet、MindSporeLite、TNN、Barracuda、Tengine、CNTK、TensorFlow.js、Caffe2和UFF。它还实验性支持PyTor
- nndeploy:一款最新上线的支持多平台、简单易用、高性能的机器学习部署框架
nudt_qxx
c++mnnpaddlepytorch
项目地址:https://github.com/Alwaysssssss/nndeploy介绍nndeploy是一款最新上线的支持多平台、高性能、简单易用的机器学习部署框架。做到一个框架就可完成多端(云、边、端)模型的高性能部署。作为一个多平台模型部署工具,我们的框架最大的宗旨就是高性能以及使用简单贴心,目前nndeploy已完成TensorRT、OpenVINO、ONNXRuntime、MNN、
- 管理类联考——数学——汇总篇——知识点突破——数据分析——计数原理——加法原理&减法原理
fo安方
管理类专业学位联考MBAEME—share考研学习EMEMBAEMBA
角度——⛲️一、考点讲解分类计数原理(加法原理)(1)定义如果完成一件事有n类办法,只要选择其中一类办法中的任何一种方法,就可以完成这件事。若第一类办法中有m1m_1m1种不同的方法,第二类办法中有m2m_2m2种不同的方法…第n类办法中有mnm_nmn种不同的办法,那么完成这件事共用N=m1+m2+...+mnN=m_1+m_2+...+m_nN=m1+m2+...+mn种不同的方法。(2)理解
- 友善之臂NanoPC-T4 RK3399 配置 安装TensorFlow2 Pytorch
Yuuchuin
pythonLinuxlinux深度学习
文章目录1.简单介绍用户与密码2.改系统-安卓改Linux避坑3.换源-备份官方源-换国内源--清华源:--华为源(据说很快):-更新软件列表和升级4.文件传输-U盘传输文件-通过XFTP传输5.远程连接6.安装Mini-forge7.编译安装MNN-编译推理部分-编译训练部分-编译转换部分-姿态检测Demo8.安装MNNPythonAPI9.安装TensorFlow2.X10.安装TensorF
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,