- 《流浪地球》:当太阳将要死去,让我们带着地球去流浪
逝去的往昔
春节假期,看了两场电影,今天的《流浪地球》看得震撼至极。影片改编于刘慈欣的同名小说,观影之前特意在微信读书上阅读完了那个短篇。图片发自App我对科幻其实是无感的。拗不过孩子们的期盼,还是跟他们一起去了影院。看完之后才知道自己是多么浅薄。电影的效果跟书籍是无法相比的。看完书已经折服于大刘的想象力了,看完电影更加感叹导演的尽心竭力,正如预告片中所言,郭帆与他的队友在四年的时间里,将影片做到了最优化。试
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 动态规划算法:
我不会JAVA!
算法动态规划
动态规划算法简介动态规划(DynamicProgramming,DP)是一种将复杂问题分解为更简单的子问题来求解的算法思想。它通过保存中间子问题的解,避免了重复计算,从而大大提高了解决问题的效率。动态规划通常用于求解最优化问题,比如最短路径、最大收益等。动态规划解题步骤确定状态:明确在问题的某一步中,需要存储什么信息来描述子问题的解。状态转移方程:找出如何通过前一步的状态来得到当前状态,即如何递推
- 最高效的学习方法
君子务本2022
在信息爆炸的时代,我们需要面对的挑战与日俱增,学习是我们提升能力,增加代偿的必由之路!可是时间和注意力这些稀缺资源注定越来越稀缺,我们怎么在有限的时间内取得最好学习效果是我们今天每一个人都必须解决的问题。万维钢的《精英日课》分享了一个实现学习效率最优化的比例,今天读来受益匪浅。写此笔记作为的开篇之作,向万维钢老师致谢,向亚利桑那大学和布朗大学的研究者致敬!三个知识点:学习区、心流、喜欢公式1、学习
- 提醒一下技术人,你是不是陷入局部最优了
ngu2008
首先看一张函数图像:函数图像很明显,这个函数最小值点在E点,而A、C、G是函数的局部极小值点。我读书期间学的数学专业,研究的方向就是最优化算法,说的直白点,就是找函数的最小值点,如果得找到了E点就说明成功了,可是如果只找到了A、C、G中的一个就停滞,这时算法就陷入局部最优了,这个时候就需要修改算法,需要加入一些扰动或者其他策略,避免函数陷入局部最优解,所以最优化算法有一个非常重要的点就是要避免算法
- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- LED恒流驱动芯片方案合集-主要应用于热门行业智能家居调光、RGB五路摄影灯补光灯、12V升压汽车车灯、调光电源模块、大功率舞台灯、太阳能灯带、应急灯、显示器背光等LED恒流驱动方案
远翔调光芯片^13828798872
智能家居汽车计算机外设能源科技
深圳市雅欣控制技术有限公司,在芯片行业深耕二十载。是Feeling和MST在深圳的一级代理商。致力于推广销售电源管理芯片、LED驱动芯片和霍尔开关系列产品,为您提供最优化的解决方案、最优质的产品及咨询服务。远翔各型号应用分类:降压芯片:FP6161,FP6188,FP6150B,FP6151。升压芯片:FP5139,FP5207,FP5217,FP6291,FP6293,FP6296,FP6298
- 【算法】动态规划
小匠码农
数据结构与算法算法动态规划
文章目录一、动态规划概念二、算法思想三、算法步骤四、应用场景五、动态规划优缺点一、动态规划概念 动态规划(DynamicProgramming,简称DP)是一种广泛应用于数学、计算机科学和经济学等领域的方法论。其核心思想是通过将复杂问题分解为相对简单的子问题,并存储子问题的解以避免冗余计算,从而显著提高计算效率。 动态规划作为运筹学的一个分支,专注于解决决策过程的最优化问题。20世纪50年代初
- Python实现贪心算法
闲人编程
pythonpython贪心算法开发语言活动问题算法
目录贪心算法简介贪心算法的基本思想贪心算法的应用场景活动选择问题Python实现活动选择问题代码解释活动选择问题的解贪心算法的正确性分析贪心算法的其他应用贪心算法的局限性贪心算法的优化与变种总结贪心算法简介贪心算法(GreedyAlgorithm)是一种在求解最优化问题时的常用算法。它的核心思想是在每一步选择中都选择当前状态下看似最优的选项,希望通过一系列的局部最优选择能够得到全局最优解。由于其简
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 动手学习深度学习——2.5 自动微分
X_Imagine
动手学习深度学习深度学习人工智能自动微分
2.5自动微分 正如【2.4微积分】所说,微分是深度学习中几乎所有最优化算法的关键步骤。虽然求这些导数的计算过程很简单,只需要一些基本的微积分知识。但对于复杂的模型,手工计算参数的更新可能很痛苦(而且经常容易出错)。深度学习框架通过自动计算导数加快了这一工作,即自动微分(AutomaticDifferentiation)。在实践中,基于我们设计的模型,系统构建了一个计算图,跟踪哪些数据结合哪些操
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 动态规划入门 & 线性动态规划
益达915
算法动态规划线性DP动态规划线性动态规划概念
参考文献:全国青少年信息学竞赛培训教材——复赛(陈合力游光辉编著)一、概念在多阶段决策的问题中,各阶段采取的决策,一般俩说是与空间或者时间相关的。决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来,故有动态的含义。我们称这种解决多阶段决策最优化的过程称为动态规划方法。例如在一个m*n的迷宫中,从左下角走到右上角可以看到,状态A和状态B应当属于同一个阶段。T可以从A走来
- 基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
软件算法开发
MATLAB程序开发#优化甘特图PPNSA扰动算子车间调度优化
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化收敛曲线。2.测试软件版本以及运行结果展示MATLAB2022a版本运行3.核心程序......................................................
- 《原则》5
颜影忆
1:个体的激励机制必须符合群体的目标。自然创造了各种激励机制,促使追求自身利益的个体带来整体的进步2:现实为了整体趋向最优化,而不是为了个体。为整体做贡献,你就可能收货回报。3:通过快速试错以适应现实是无价的;不需要任何人的理解或引导,自然选择的试错就能实现改进。4:意识到你即是一切又什么都不是,并决定你想成为什么样子。5:你的未来取决于你的视角。
- 实验4:最优化模型实验
一个毛毛虫
电子科技大学数学实验练习题matlab数学建模
实验4:最优化模型实验4.1基础训练求函数极值求一元函数f(x)=exsinxf(x)=e^xsinxf(x)=exsinx在区间[0,9]内的最大值点、最大值,并绘制出函数图形,编写function程序文件返回2个参数,依次返回最大值点、最大值.提示:调用函数fminbnd计算;先绘制函数曲线,通过观察确定最大值点所在区间.参考函数如下:function[x0,y0]=fun代码:functio
- 最优化问题06-谢泼德引理
凡有言说
谢泼德引理(Shephard'slemma)是微观经济学中的一个重要结论,可以由包络定理得到。在给定支出函数情况下,对p求偏导可得到希克斯需求函数。12
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- Logistic回归
洛克黄瓜
Logistic回归假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程称作回归。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。二值型输出分类器Sigmoid函数image.png为了实现Logistic回归分类器,在每个特征值上乘以一个回归系数,然后把所有值相加,将这个总和代入上述函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据分为
- 模拟退火算法
aaa8db431342
学号:17020150083姓名:许学同原文链接:https://blog.csdn.net/weixin_40562999/article/details/80853354【嵌牛导读】著名的模拟退火算法,它是一种基于蒙特卡洛思想设计的近似求解最优化问题的方法。【嵌牛鼻子】模拟退火算法【嵌牛正文】一点历史——如果你不感兴趣,可以跳过美国物理学家N.Metropolis和同仁在1953年发表研究复杂
- LeetCode 动态规划专题 5:0-1 背包问题
李威威
这一节我们介绍使用动态规划解决的一个非常经典的问题:0-1背包问题。0-1背包问题描述问题描述:有一个背包,它的容量为(Capacity)。现在有种不同的物品,编号为,其中每一件物品的重量为,价值为。问可以向这个背包中盛放哪些物品,使得在不超过背包容量的基础上,物品的总价值最大。这个问题其实是一个有约束的最优化问题。思路1:暴力解法。我们最容易想到的是暴力解法,因为每一件物品都可以放进背包,也可以
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- 【TSP问题】基于遗传算法求解快递运输成本最优化问题GA-MTSP附Matlab代码
天天Matlab代码科研顾问
路径规划matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.问题描述旅行商问题(TSP)是一个经典的组合优化问题,它要求在给定一组城市和城市之间的距离的情况下
- 袁亚湘院士上《开讲啦》变数学魔术啦!
MatheMagician
人工智能hashtabletabxhtmlj2ee
早点关注我,精彩不迷路!上个月中,我敬仰已久的袁亚湘院士登上了央视《开讲啦》的舞台,给刚开学不久的孩子们献上了精彩的演讲,演讲全程大家可看视频慢慢欣赏:视频1袁亚湘院士《开讲啦》演讲袁老师是知名的最优化理论的专家,在我还在读大三的时候,还曾通过天大数学系黄老师介绍,邮件联系袁老,想找他去读最优化方向的研究生。无奈专业差距太大,在流程上也几乎走不通,不过袁老师还是耐心地给我回了信,并且给了我很多鼓励
- 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
Matlab程序猿
通信系统MATLAB通信原理matlab信息与通信算法
操作环境:MATLAB2022a1、算法描述D2D蜂窝通信介绍D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s