pymysql与SQLAchemy的基本知识点整理

本篇对于Python操作MySQL主要使用两种方式:

  • 原生模块 pymsql
  • ORM框架 SQLAchemy

一、pymysql

    1. 下载安装
      pip install pymysql
  • 2.使用操作
    ------1.执行SQL
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
# 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 创建游标
cursor = conn.cursor()
# 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
# 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
# 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
# 提交,不然无法保存新建或者修改的数据
conn.commit()
# 关闭游标
cursor.close()
# 关闭连接
conn.close()

------2.获取新创建数据自增ID

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
  
# 获取最新自增ID
new_id = cursor.lastrowid

------3.获取查询数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
  
# 获取第一行数据
row_1 = cursor.fetchone()
  
# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()
  
conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode='relative') # 相对当前位置移动
  • cursor.scroll(2,mode='absolute') # 相对绝对位置移动
    ------ 4.fetch数据类型
    关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()

二、SQLAchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果
安装:pip install SQLAlchemy

pymysql与SQLAchemy的基本知识点整理_第1张图片
image.png

SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

MySQL-Python
    mysql+mysqldb://:@[:]/
   
pymysql
    mysql+pymysql://:@/[?]
   
MySQL-Connector
    mysql+mysqlconnector://:@[:]/
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
   
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

1、SQLAchemy的基本使用

  • 创建表
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
 
engine = create_engine("mysql+pymysql://root:123456@localhost/testdb",
                                    encoding='utf-8', echo=True)
 
 
Base = declarative_base() #生成orm基类
 
class User(Base):
    __tablename__ = 'user' #表名
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    password = Column(String(64))
 
Base.metadata.create_all(engine) #创建表结构

除上面的创建之外,还有一种创建表的方式,虽不常用,但还是看看吧

from sqlalchemy import Table, MetaData, Column, Integer, String, ForeignKey
from sqlalchemy.orm import mapper
 
metadata = MetaData()
 
user = Table('user', metadata,
            Column('id', Integer, primary_key=True),
            Column('name', String(50)),
            Column('fullname', String(50)),
            Column('password', String(12))
        )
 
class User(object):
    def __init__(self, name, fullname, password):
        self.name = name
        self.fullname = fullname
        self.password = password
 
mapper(User, user) 
#the table metadata is created separately with the Table construct,
 then associated with the User class via the mapper() function

事实上,我们用第一种方式创建的表就是基于第2种方式的再封装。

  • 新增
from sqlalchemy.orm import sessionmaker, relationship

Session_class = sessionmaker(bind=engine) 
#创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
Session = Session_class() #生成session实例

user_obj = User(name="alex",password="123456") #生成你要创建的数据对象
print(user_obj.name,user_obj.id)  #此时还没创建对象呢,不信你打印一下id发现还是None
 
Session.add(user_obj) #把要创建的数据对象添加到这个session里, 一会统一创建
print(user_obj.name,user_obj.id) #此时也依然还没创建
 
Session.commit() #现此才统一提交,创建数据
  • 查询
my_user = Session.query(User).filter_by(name="alex").first()
#这样查询出来的不是直接的数据是一个对象
print(my_user)#<__main__.User object at 0x105b4ba90>
#所以再经一轮提取才能获得数据
print(my_user.id,my_user.name,my_user.password)

如果想查询出来直接是数据的话,可以通过修改类的定义来返回

def __repr__(self):
    return "" % (
        self.name, self.password)
  • 修改
    修改就是先查询出将要修改的内容,然后直接重新对其赋值,这样就能达到修改的目的。
my_user = Session.query(User).filter_by(name="alex").first()
my_user.name = "Alex Li" 
Session.commit()
  • 回滚
my_user = Session.query(User).filter_by(id=1).first()
my_user.name = "Jack"
 
fake_user = User(name='Rain', password='12345')
Session.add(fake_user)
  #这时看session里有你刚添加和修改的数据
print(Session.query(User).filter(User.name.in_(['Jack','rain'])).all() ) 
#此时你rollback一下
Session.rollback() 
#再查就发现刚才添加的数据没有了。
print(Session.query(User).filter(User.name.in_(['Jack','rain'])).all() ) 
# Session
# Session.commit()
  • 获取所有数据
    print(Session.query(User.name,User.id).all())
  • 多条件查询
    objs = Session.query(User).filter(User.id>0).filter(User.id<7).all()
    上面2个filter的关系相当于 user.id >1 AND user.id <7 的效果
  • 统计和分组
#统计
Session.query(User).filter(User.name.like("Ra%")).count()
#分组
from sqlalchemy import func
print(Session.query(func.count(User.name),User.name).group_by(User.name).all() )
#相当于原生sql为
select count(user.name) AS count_1, user.name AS user_name
FROM user GROUP BY user.name
  • 外键关联
    我们创建一个addresses表,跟user表关联
from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship
 
class Address(Base):
    __tablename__ = 'addresses'
    id = Column(Integer, primary_key=True)
    email_address = Column(String(32), nullable=False)
    user_id = Column(Integer, ForeignKey('user.id'))
 
    user = relationship("User", backref="addresses") 
#这个nb,允许你在user表里通过backref字段反向查出所有它在addresses表里的关联项
 
    def __repr__(self):
        return "" % self.email_address

表创建好后,我们可以这样反查试试

obj = Session.query(User).first()
for i in obj.addresses: #通过user对象反查关联的addresses记录
    print(i)
 
addr_obj = Session.query(Address).first()
print(addr_obj.user.name)  #在addr_obj里直接查关联的user表

创建关联对象

obj = Session.query(User).filter(User.name=='rain').all()[0]
print(obj.addresses)
 
obj.addresses = [Address(email_address="[email protected]"), #添加关联对象
                 Address(email_address="[email protected]")]
Session.commit()

2、多外键关联
下表中,Customer表有2个字段都关联了Address表

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
 
Base = declarative_base()
 
class Customer(Base):
    __tablename__ = 'customer'
    id = Column(Integer, primary_key=True)
    name = Column(String)
 
    billing_address_id = Column(Integer, ForeignKey("address.id"))
    shipping_address_id = Column(Integer, ForeignKey("address.id"))
 
    billing_address = relationship("Address") 
    shipping_address = relationship("Address")
 
class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    street = Column(String)
    city = Column(String)
    state = Column(String)

创建表结构是没有问题的,但你Address表中插入数据时会报下面的错.

sqlalchemy.exc.AmbiguousForeignKeysError: Could not determine join
condition between parent/child tables on relationship
Customer.billing_address - there are multiple foreign key
paths linking the tables.  Specify the 'foreign_keys' argument,
providing a list of those columns which should be
counted as containing a foreign key reference to the parent table.

解决办法如下:

class Customer(Base):
    __tablename__ = 'customer'
    id = Column(Integer, primary_key=True)
    name = Column(String)
 
    billing_address_id = Column(Integer, ForeignKey("address.id"))
    shipping_address_id = Column(Integer, ForeignKey("address.id"))
 
    billing_address = relationship("Address", foreign_keys=[billing_address_id])
    shipping_address = relationship("Address", foreign_keys=[shipping_address_id])

这样sqlachemy就能分清哪个外键是对应哪个字段了
3、多对多关系
现在来设计一个能描述“图书”与“作者”的关系的表结构,需求是

  • 一本书可以有好几个作者一起出版
  • 一个作者可以写好几本书
#一本书可以有多个作者,一个作者又可以出版多本书

from sqlalchemy import Table, Column, Integer,String,DATE, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker


Base = declarative_base()

book_m2m_author = Table('book_m2m_author', Base.metadata,
                        Column('book_id',Integer,ForeignKey('books.id')),
                        Column('author_id',Integer,ForeignKey('authors.id')),
                        )

class Book(Base):
    __tablename__ = 'books'
    id = Column(Integer,primary_key=True)
    name = Column(String(64))
    pub_date = Column(DATE)
    authors = relationship('Author',secondary=book_m2m_author,backref='books')

    def __repr__(self):
        return self.name

class Author(Base):
    __tablename__ = 'authors'
    id = Column(Integer, primary_key=True)
    name = Column(String(32))

    def __repr__(self):
        return self.name

接下来创建几本书和作者

Session_class = sessionmaker(bind=engine) 
#创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
s = Session_class() #生成session实例
 
b1 = Book(name="Python入门到放弃")
b2 = Book(name="精通Python72式")
b3 = Book(name="MYSQL入门到装逼")
b4 = Book(name="C#学习")
 
a1 = Author(name="Alex")
a2 = Author(name="Jack")
a3 = Author(name="Rain")
 
b1.authors = [a1,a2]
b2.authors = [a1,a2,a3]
 
s.add_all([b1,b2,b3,b4,a1,a2,a3])
 
s.commit()

此时,手动连上mysql,分别查看这3张表,你会发现,book_m2m_author中自动创建了多条纪录用来连接book和author表

mysql> select * from books;
+----+------------------+----------+
| id | name             | pub_date |
+----+------------------+----------+
|  1 | Python入门到放弃   | NULL     |
|  2 | 精通Python72式     | NULL     |
|  3 | MYSQL入门到装逼     | NULL     |
|  4 | C#学习     | NULL     |
+----+------------------+----------+
4 rows in set (0.00 sec)
 
mysql> select * from authors;
+----+------+
| id | name |
+----+------+
| 10 | Alex |
| 11 | Jack |
| 12 | Rain |
+----+------+
3 rows in set (0.00 sec)
 
mysql> select * from book_m2m_author;
+---------+-----------+
| book_id | author_id |
+---------+-----------+
|       2 |        10 |
|       2 |        11 |
|       2 |        12 |
|       1 |        10 |
|       1 |        11 |
+---------+-----------+
5 rows in set (0.00 sec)

此时,我们去用orm查一下数据

print('--------通过书表查关联的作者---------')
 
book_obj = s.query(Book).filter_by(name="Python入门到放弃").first()
print(book_obj.name, book_obj.authors)
 
print('--------通过作者表查关联的书---------')
author_obj =s.query(Author).filter_by(name="Alex").first()
print(author_obj.name , author_obj.books)
s.commit()

输出如下:

--------通过书表查关联的作者---------
Python入门到放弃 [Alex, Jack]
--------通过作者表查关联的书---------
Alex [精通Python72式, Python入门到放弃]
  • 多对多删除
    删除数据时不用管boo_m2m_authors , sqlalchemy会自动帮你把对应的数据删除
  • 通过书删除作者
author_obj =s.query(Author).filter_by(name="Jack").first()
 
book_obj = s.query(Book).filter_by(name="精通Python72式").first()
 
book_obj.authors.remove(author_obj) #从一本书里删除一个作者
s.commit()
  • 直接删除作者
    删除作者时,会把这个作者跟所有书的关联关系数据也自动删除
author_obj =s.query(Author).filter_by(name="Alex").first()
# print(author_obj.name , author_obj.books)
s.delete(author_obj)
s.commit()
  • 处理中文
    sqlalchemy设置编码字符集一定要在数据库访问的URL上增加charset=utf8,否则数据库的连接就不是utf8的编码格式:
    eng = create_engine('mysql://root:root@localhost:3306/test2?charset=utf8',echo=True)

你可能感兴趣的:(pymysql与SQLAchemy的基本知识点整理)