python, numpy, pandas 中对文件数据的处理

       在数据分析中,我们需要把磁盘中的数据导入导出到系统,python,numpy,pandas中都提供了对数据的读取操作。

pandas中的解析函数:

read_csv Load delimited data from a file, URL, or file-like object. Use comma as default delimiter
read_table Load delimited data from a file, URL, or file-like object. Use tab ('\t') as default delimiter
read_fwf Read data in fixed-width column format (that is, no delimiters)
read_clipboard Version ofread_table that reads data from the clipboard. Useful for converting tables from web pages

read_csv()从磁盘或者缓存中读取数据,函数参数如下:

read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None,
         index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,
         dtype=None, engine=None, converters=None, true_values=None,
         false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None,
         keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True,
         parse_dates=False, infer_datetime_format=False, keep_date_col=False,
         date_parser=None, dayfirst=False, iterator=False, chunksize=None,
         compression='infer', thousands=None, decimal=b'.', lineterminator=None,
         quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None,
         dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True,
         skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True,
         memory_map=False, float_precision=None)

默认打开一个以 ' , ' 分割的CSV文件:

In [69]: !type D:\workspaces\datatest\ex1.csv   # linux 中用 !cat 
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

将数据读取为Dataframe 对象:

In [70]: df = pd.read_csv('D:\workspaces\datatest\ex1.csv')  # 用read_table也可以,要指定分隔符
                                                   # df = pd.read_table('D:\workspaces\datatest\ex1.csv',sep=',')
In [71]: df
Out[71]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

再实际中,并不是所有的文件都有标题行:

In [72]: !type D:\workspaces\datatest\ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

此时导入有两种方式:1)默认pandas分配的列名、 2)自己指定

In [76]: df = pd.read_csv('D:\workspaces\datatest\ex2.csv',header=None)  # header=None  一定记得带

In [77]: df
Out[77]: 
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo

In [78]: names = ['a','b','c','d','message']
In [79]: df = pd.read_csv('D:\workspaces\datatest\ex2.csv',names=names)
In [80]: df
Out[80]: 
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

将 'message' 列指定为 Dataframe 的索引:

In [81]: df = pd.read_csv('D:\workspaces\datatest\ex2.csv',names=names,index_col='message')
In [82]: df
Out[82]: 
         a   b   c   d
message
hello    1   2   3   4
world    5   6   7   8
foo      9  10  11  12

还可以将多个列做成一个层次化的索引:

In [83]: !type D:\workspaces\datatest\ex3.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16
In [85]: df = pd.read_csv('D:\workspaces\datatest\ex3.csv',index_col=['key1','key2'])
In [86]: df
Out[86]: 
           value1  value2
key1 key2
one  a          1       2
     b          3       4
     c          5       6
     d          7       8
two  a          9      10
     b         11      12
     c         13      14
     d         15      16

如果你想跳过文件中的某些行则可以用 skiprows

In [88]: df = pd.read_csv('D:\workspaces\datatest\ex3.csv',skiprows=[1,4])
In [89]: df
Out[89]: 
  key1 key2  value1  value2
0  one    b       3       4
1  one    c       5       6
2  two    a       9      10
3  two    b      11      12
4  two    c      13      14
5  two    d      15      16
In [90]: df = pd.read_csv('D:\workspaces\datatest\ex3.csv',skiprows=[1,5])
In [91]: df
Out[91]: 
  key1 key2  value1  value2
0  one    b       3       4
1  one    c       5       6
2  one    d       7       8
3  two    b      11      12
4  two    c      13      14
5  two    d      15      16

缺失值:缺失值在实际中要么用空字符串表示,要么用某个标记值标记

In [93]: !type D:\workspaces\datatest\ex1.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
In [94]: result = pd.read_csv('D:\workspaces\datatest\ex1.csv')
In [95]: result
Out[95]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo

na_values 可以接受一组用于表示缺失值的字符串:

In [96]: result = pd.read_csv('D:\workspaces\datatest\ex1.csv',na_values= ['NULL'])
In [97]: result
Out[97]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo
用一个字典为各列指定不同的NA标记值:
In [98]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [99]: result = pd.read_csv('D:\workspaces\datatest\ex1.csv',na_values=sentinels)
In [100]: result
Out[100]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       NaN  5   6   NaN   8   world
2     three  9  10  11.0  12     NaN

read_csv、read_table的参数:

python, numpy, pandas 中对文件数据的处理_第1张图片


 将文件中的数据逐块读取:如果要读取的文件太大,一次读取到内存会导致资源的严重占用,这时你希望读取一部分或者逐块读取:

nrows : 设置读取的行数;

In [122]: result = pd.read_csv('D:\workspaces\datatest\ex6.csv',nrows=5)
In [123]: result
Out[123]: 
        one       two     three      four key
0  0.467976 -0.038649 -0.295344 -1.824726   L
1 -0.358893  1.404453  0.704965 -0.200638   B
2 -0.501840  0.659254 -0.421691 -0.057688   G
3  0.204886  1.074134  1.388361 -0.982404   R
4  0.354628 -0.133116  0.283763 -0.837063   Q

chunksize : 设置每块的行数

In [128]: chunk = pd.read_csv('D:\workspaces\datatest\ex6.csv',chunksize=
     ...: 1000)
In [129]: count = pd.Series([])
In [130]: for pie in chunk:
     ...:     count = count.add(pie['key'].value_counts(),fill_value=0)
In [131]: count              # sort_index()   sort_values()
Out[131]: 
0    151.0
1    146.0
2    152.0
3    162.0
4    171.0
5    157.0
6    166.0
7    164.0
8    162.0
9    150.0
A    320.0
B    302.0
C    286.0
D    320.0
E    368.0
dtype: float64

将数据写入到文件:to_csv()  默认使用 ',' 分割,也可以自己指定。

to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, 
       header=True, index=True, index_label=None, mode='w', encoding=None, co
       mpression=None, quoting=None, quotechar='"', line_terminator='\n',
       chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.') 
 
  
In [159]: data = pd.read_csv('D:\workspaces\datatest\ex1.csv')
In [160]: data
Out[160]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo
In [161]: data.to_csv('D:\workspaces\datatest\out.csv')
In [162]: !type D:\workspaces\datatest\out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo
In [163]: data.to_csv('D:\workspaces\datatest\out.csv',sep='_')
In [164]: !type D:\workspaces\datatest\out.csv
_something_a_b_c_d_message
0_one_1_2_3.0_4_
1_two_5_6__8_world
2_three_9_10_11.0_12_foo

在输出的时候,缺失值会被表示为空字符串,若想用其他值表示可用 na_rep:

In [169]: data = pd.read_csv('D:\workspaces\datatest\ex1.csv')
In [170]: data
Out[170]: 
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo
In [171]: data.to_csv('D:\workspaces\datatest\out.csv',na_rep='QS')
In [172]: !type D:\workspaces\datatest\out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,QS
1,two,5,6,QS,8,world
2,three,9,10,11.0,12,foo

默认情况下会把行和列的标签都写入文件,可以指定不写入,也可以指定写入某些列:

In [183]: data.to_csv('D:\workspaces\datatest\out.csv',index=False,columns=['a','b','c'])
In [184]: !type D:\workspaces\datatest\out.csv
a,b,c
1,2,3.0
5,6,
9,10,11.0

Series也有 to_csv, pandas.read_csv (Series.from_csv 过时的方法) :

In [209]: dates = pd.date_range('6/18/2018', periods=7)
In [210]: dates
Out[210]: 
DatetimeIndex(['2018-06-18', '2018-06-19', '2018-06-20', '2018-06-21',
               '2018-06-22', '2018-06-23', '2018-06-24'],
              dtype='datetime64[ns]', freq='D')
In [211]: ts = pd.Series(np.arange(7),index=dates)
In [213]: ts.to_csv('D:\workspaces\datatest\out_ts.csv')
In [214]: ts.from_csv('D:\workspaces\datatest\out_ts.csv')
D:\projects\env\Lib\site-packages\pandas\core\series.py:3726: FutureWarnin
g: from_csv is deprecated. Please use read_csv(...) instead. Note that som
e of the default arguments are different, so please refer to the documenta
tion for from_csv when changing your function calls
  infer_datetime_format=infer_datetime_format)
Out[214]: 
2018-06-18    0
2018-06-19    1
2018-06-20    2
2018-06-21    3
2018-06-22    4
2018-06-23    5
2018-06-24    6
dtype: int64
In [215]: pd.read_csv('D:\workspaces\datatest\out_ts.csv')
Out[215]: 
   2018-06-18  0
0  2018-06-19  1
1  2018-06-20  2
2  2018-06-21  3
3  2018-06-22  4
4  2018-06-23  5
5  2018-06-24  6

手工处理分隔符:

pandas提供的方法并不是通用的,有的时候还是需要我们收工处理,对于任何单字符分割的文件,可以直接使用python内置的CSV模块:

reader(...)
    csv_reader = reader(iterable [, dialect='excel']
                            [optional keyword args])
        for row in csv_reader:
            process(row)
    The "iterable" argument can be any object that returns a line
    of input for each iteration, such as a file object or a list.  The
    optional "dialect" parameter is discussed below.  The function
    also accepts optional keyword arguments which override settings
    provided by the dialect.
In [217]: !type D:\workspaces\datatest\ex1.csv
"w","f","c"
"4","5","6"
"4","3","2","1"
In [218]: import csv
In [219]: file = open('D:\workspaces\datatest\ex1.csv')
In [220]: reader = csv.reader(file)
In [221]: for line in reader:
     ...:     print(line)
     ...: 
['w', 'f', 'c']
['4', '5', '6']
['4', '3', '2', '1']
In [238]: file = open('D:\workspaces\datatest\ex1.csv')
In [239]: reader = csv.reader(file)
In [240]: lines = list(reader)
In [241]: header,values = lines[0],lines[1:]
In [242]: data = {header:val for header,val in zip(header,zip(*values))}
In [243]: data
Out[243]: {'c': ('6', '2'), 'f': ('5', '3'), 'w': ('4', '4')}

csv文件的形式有很多,只需要定义csv.Dialect的子类即可定义新格式:

class dialect(csv.Dialect):
    lineterminator = '\n'
    delimiter = ';'
    quotechar = '"'
reader = csv.reader(f, dialect=dialect)

csv.reader参数的选项:

delimiter  One-character string to separate fields. Defaults to ','.
lineterminator  Line terminator for writing, defaults to '\r\n'. Reader ignores this and recognizes
cross-platform line terminators.
quotechar  Quote character for fields with special characters (like a delimiter). Default is '"'.
quoting  Quoting convention. Options include csv.QUOTE_ALL (quote all fields),
csv.QUOTE_MINIMAL (only fields with special characters like the delimiter),
csv.QUOTE_NONNUMERIC, and csv.QUOTE_NON (no quoting). See Python’s
documentation for full details. Defaults to QUOTE_MINIMAL.
skipinitialspace  Ignore whitespace after each delimiter. Default False.
doublequote  How to handle quoting character inside a field. If True, it is doubled. See online
documentation for full detail and behavior.
escapechar  String to escape the delimiter if quoting is set to csv.QUOTE_NONE. Disabled by
default

手工输出分隔符文件:

with open('data.csv', 'w') as f:
    writer = csv.writer(f, dialect=dialect)
    writer.writerow(('w', 'f', 'c'))
    writer.writerow(('1', '2', '3'))
    writer.writerow(('4', '5', '6'))
    writer.writerow(('7', '8', '9'))

处理JSON 数据

JSON(JavaScript Object Natation)一种比较灵活的数据格式,现在网络传输数据多用JSON。

python 标准库中,就有对 json 的处理模块 json。

一个简单的JSON格式的数据:

obj = """
        { "name": "Wes",
          "places_lived": ["United States", "Spain", "Germany"],
          "pet": null,
          "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
                       {"name": "Katie", "age": 33, "pet": "Cisco"}]
        }
      """ 

将JSON格式的数据转换成python对象形式 json.loads:

In [2]: import json
In [6]: result = json.loads(obj)
In [7]: result
Out[7]: 
{'name': 'Wes',
 'pet': None,
 'places_lived': ['United States', 'Spain', 'Germany'],
 'siblings': [{'age': 25, 'name': 'Scott', 'pet': 'Zuko'},
              {'age': 33, 'name': 'Katie', 'pet': 'Cisco'}]
}

json.dumps 则相反,把python对象转换成JSON格式:

In [8]: toJson = json.dumps(result)
In [9]: toJson
Out[9]: '{
          "pet": null, 
          "name": "Wes", 
          "siblings": [{"age": 25, "name": "Scott", "pet": "Zuko"}, {"age": 33, "name": "Katie", "pet": "Cisco"}], 
          "places_lived": ["United States", "Spain", "Germany"]
         }'

JSON数据格式转换为python对象后,既可以转换为 Dataframe 了:

In [14]: df = pd.DataFrame(result['siblings'],columns=['name','age','pet'])
In [15]: df
Out[15]: 
    name  age    pet
0  Scott   25   Zuko
1  Katie   33  Cisco
处理的数据还可以是 html:

这里我自己写了一个简单爬虫,从 https://finance.yahoo.com/quote/AAPL/options?ltr=1 收集了部分数据,感兴趣的话,也可以自己改改代码,自己玩玩。

from urllib import request
from bs4 import BeautifulSoup
import pandas as pd

class ParseHtml(object):

    def __init__(self):
        self.title = []
        self.contexts = []

    def _download(self, url):

        if url is None:
            return None
        result = request.urlopen(url)
        if result.getcode() != 200:        # 判断返回的状态码 200 表示正常返回
            return None
        return result.read()

    def _parser(self, context):

        soup = BeautifulSoup(context, 'html.parser', from_encoding='utf-8')       # 用 BeautifulSoup 根据下载的内容解析内容
        table = soup.find('table', class_='puts table-bordered W(100%) Pos(r) list-options')

        heads = table.find('tr').find_all('th')              # 获取表头(所有的 th)
        t_body_trs = table.find('tbody').find_all('tr')      # 获取表格的所有行(除去表头tr外,所有的tr)

        for head in heads:
            self.title.append(head.get_text())     # 获取所有的表头值

        for bt in t_body_trs:
            tds = bt.find_all('td')           # 获取每行的所有单元格
            temp = []
            for td in tds:
                temp.append(td.get_text())    # 获取每行单元格的内容
            self.contexts.append(temp)

        return self.title, self.contexts

    def gen_data_frame(self):
        html = self._download('https://finance.yahoo.com/quote/AAPL/options?ltr=1')
        t, c = self._parser(html)
        data_frame = pd.DataFrame(c, columns=t)    # 根据提取的内容生成 pd.Dataframe
        return data_frame

if __name__ == '__main__':
    ph = ParseHtml()
    df = ph.gen_data_frame()
    print(df)

pandas 中提供了一个 to_pickle方法用于保存二进制数据和read_pickle方法把数据读回python,

numpy中提供了一个 save方法用于保存二进制数据和load方法把数据读回python,

python中对二进制进行存储是使用内置的 pickle序列化。

In [13]: frame = pd.read_csv('D:\workspaces\datatest\ex2.csv',header=None)
In [14]: frame
Out[14]: 
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo
In [15]: frame.to_pickle('D:\workspaces\datatest\_frame_pickle')
In [16]: pd.read_pickle('D:\workspaces\datatest\_frame_pickle')
Out[16]: 
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo

使用 HDF5 格式:

HDF5的是层次性数据格式(hierarchical Data Format),能高效的读取磁盘上的二进制文件,是一个流行的工业级 C 语言库。每个HDF5文件都含有一个文件系统式的节点结构,能够存储多个数据集,并支持元数据。HDF5支持多种压缩器的及时压缩,高效的存储重复模式数据。

Python中的HDF5库有两个接口 PyTables 和 h5py。h5py提供了一种直接而高级的HDF5 API访问接口。而PyTables 则抽象HDF5法人许多细节已提供多种灵活的数据容器,表索引,查询功能以及对核外计算技术的某些支持。

pandas 有一个最小化的类似于字典的 HDFstore类,他通过PyTables 存储pandas对象:

若出现:ImportError: HDFStore requires PyTables, "No module named 'tables'" problem importing 安装 tables。pip install tables
In [4]: store = pd.HDFStore('mydata.h5')
In [5]: frame = pd.read_csv('D:\workspaces\datatest\ex2.csv',header=None)
In [6]: store['obj1'] = frame
In [7]: store
Out[7]: 

File path: mydata.h5

In [8]: store['obj1']
Out[8]: 
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo

还可以处理 Microsoft Excel 文件 和 数据库中的数据,这里就不介绍了,有机会后面介绍有关 python数据库相关的知识。

你可能感兴趣的:(数据分析)