Xgboost的参数及调参

一、Xgboost参数解释

    XGBoost的参数一共分为三类:

  1. 通用参数:宏观函数控制。
  2. Booster参数:控制每一步的booster(tree/regression)。booster参数一般可以调控模型的效果和计算代价。我们所说的调参,很这是大程度上都是在调整booster参数。
  3. 学习目标参数:控制训练目标的表现。我们对于问题的划分主要体现在学习目标参数上。比如我们要做分类还是回归,做二分类还是多分类,这都是目标参数所提供的。

    我下面介绍的参数都是我觉得比较重要的。

1.1、通用参数

  1. booster:我们有两种参数选择,gbtree和gblinear。gbtree是采用树的结构来运行数据,而gblinear是基于线性模型。
  2. silent:静默模式,为1时模型运行不输出。
  3. nthread: 使用线程数,一般我们设置成-1,使用所有线程。如果有需要,我们设置成多少就是用多少线程。

1.2、Booster参数

  1. n_estimator: 也作num_boosting_rounds
        这是生成的最大树的数目,也是最大的迭代次数。
  2. learning_rate: 有时也叫作eta,系统默认值为0.3。
        每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。我们一般使用比默认值小一点,0.1左右就很好。
  3. gamma:系统默认为0,我们也常用0。
        在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。因为gamma值越大的时候,损失函数下降更多才可以分裂节点。所以树生成的时候更不容易分裂节点。范围: [0,∞]
  4. subsample:系统默认为1。
        这个参数控制对于每棵树,随机采样的比例。减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-1,0.5代表平均采样,防止过拟合. 范围: (0,1],注意不可取0
  5. colsample_bytree:系统默认值为1。我们一般设置成0.8左右。
        用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-1范围: (0,1]
  6. colsample_bylevel:默认为1,我们也设置为1.
        这个就相比于前一个更加细致了,它指的是每棵树每次节点分裂的时候列采样的比例
  7. max_depth: 系统默认值为6
        我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。设置为0代表没有限制,范围: [0,∞]
  8. max_delta_step:默认0,我们常用0.
        这个参数限制了每棵树权重改变的最大步长,如果这个参数的值为0,则意味着没有约束。如果他被赋予了某一个正值,则是这个算法更加保守。通常,这个参数我们不需要设置,但是当个类别的样本极不平衡的时候,这个参数对逻辑回归优化器是很有帮助的。
  9. lambda:也称reg_lambda,默认值为0。
        权重的L2正则化项。(和Ridge regression类似)。这个参数是用来控制XGBoost的正则化部分的。这个参数在减少过拟合上很有帮助。
  10. alpha:也称reg_alpha默认为0,
        权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。
  11. scale_pos_weight:默认为1
        在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。通常可以将其设置为负样本的数目与正样本数目的比值。

1.3、学习目标参数

objective [缺省值=reg:linear]
  • reg:linear– 线性回归
  • reg:logistic – 逻辑回归
  • binary:logistic – 二分类逻辑回归,输出为概率
  • binary:logitraw – 二分类逻辑回归,输出的结果为wTx
  • count:poisson – 计数问题的poisson回归,输出结果为poisson分布。在poisson回归中,max_delta_step的缺省值为0.7 (used to safeguard optimization)
  • multi:softmax – 设置 XGBoost 使用softmax目标函数做多分类,需要设置参数num_class(类别个数)
  • multi:softprob – 如同softmax,但是输出结果为ndata*nclass的向量,其中的值是每个数据分为每个类的概率。
eval_metric [缺省值=通过目标函数选择]
  • rmse: 均方根误差
  • mae: 平均绝对值误差
  • logloss: negative log-likelihood
  • error: 二分类错误率。其值通过错误分类数目与全部分类数目比值得到。对于预测,预测值大于0.5被认为是正类,其它归为负类。 error@t: 不同的划分阈值可以通过 ‘t’进行设置
  • merror: 多分类错误率,计算公式为(wrong cases)/(all cases)
  • mlogloss: 多分类log损失
  • auc: 曲线下的面积
  • ndcg: Normalized Discounted Cumulative Gain
  • map: 平均正确率

    一般来说,我们也可以使用 xgboost.train(params, dtrain) 函数来训练我们的模型。这里的 params 指的是 booster 参数。

二、举例

import xgboost as xgb
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

train_data = pd.read_csv('train.csv')   # 读取数据
y = train_data.pop('30').values   # 用pop方式将训练数据中的标签值y取出来,作为训练目标,这里的‘30’是标签的列名
col = train_data.columns   
x = train_data[col].values  # 剩下的列作为训练数据
train_x, valid_x, train_y, valid_y = train_test_split(x, y, test_size=0.333, random_state=0)   # 分训练集和验证集
# 这里不需要Dmatrix

parameters = {
              'max_depth': [5, 10, 15, 20, 25],
              'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],
              'n_estimators': [500, 1000, 2000, 3000, 5000],
              'min_child_weight': [0, 2, 5, 10, 20],
              'max_delta_step': [0, 0.2, 0.6, 1, 2],
              'subsample': [0.6, 0.7, 0.8, 0.85, 0.95],
              'colsample_bytree': [0.5, 0.6, 0.7, 0.8, 0.9],
              'reg_alpha': [0, 0.25, 0.5, 0.75, 1],
              'reg_lambda': [0.2, 0.4, 0.6, 0.8, 1],
              'scale_pos_weight': [0.2, 0.4, 0.6, 0.8, 1]

}

xlf = xgb.XGBClassifier(max_depth=10,
            learning_rate=0.01,
            n_estimators=2000,
            silent=True,
            objective='binary:logistic',
            nthread=-1,
            gamma=0,
            min_child_weight=1,
            max_delta_step=0,
            subsample=0.85,
            colsample_bytree=0.7,
            colsample_bylevel=1,
            reg_alpha=0,
            reg_lambda=1,
            scale_pos_weight=1,
            seed=1440,
            missing=None)
            
# 有了gridsearch我们便不需要fit函数
gsearch = GridSearchCV(xlf, param_grid=parameters, scoring='accuracy', cv=3)
gsearch.fit(train_x, train_y)

print("Best score: %0.3f" % gsearch.best_score_)
print("Best parameters set:")
best_parameters = gsearch.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
    print("\t%s: %r" % (param_name, best_parameters[param_name]))

    我们也可以分别对每个参数进行优化,以上即为调参内容。

    参考资料

XGBoost官方文档
https://blog.csdn.net/wzmsltw/article/details/50994481
https://blog.csdn.net/zllnau66/article/details/81980876

你可能感兴趣的:(机器学习)