逐梦逐梦逐梦
题目背景:
12.08 省选模拟T1
分析:主席树
这个题,除了细节太多,代码太难写,实现起来比较烦以外······其他还是很简单的。需要支持区间前k大求和,以及区间查找第k个偶数或者奇数,那么我们需要维护的就是当前权值区间的所有数的个数,奇数的个数,偶数的个数,以及所有数的和,因为是区间上的查询,所以外面套主席树就可以了,对于一次询问,先求当前区间的前k大之和,以及前k个中有多少个奇数,多少个偶数,如果和为偶数则就是答案,否则需要查找下一个奇数,以及下一个偶数,减去和中的最后一个奇数,然后加上下一个偶数,或者减去和中的最后一个偶数,加上下一个奇数,两者中的较大值,即为答案,复杂度大常数O(nlogn)
Source:
/*
created by scarlyw
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
inline char read() {
static const int IN_LEN = 1024 * 1024;
static char buf[IN_LEN], *s, *t;
if (s == t) {
t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
if (s == t) return -1;
}
return *s++;
}
///*
template
inline void R(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return ;
if (c == '-') iosig = true;
}
for (x = 0; isdigit(c); c = read())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN], *oh = obuf;
inline void write_char(char c) {
if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
*oh++ = c;
}
template
inline void W(T x) {
static int buf[30], cnt;
if (x == 0) write_char('0');
else {
if (x < 0) write_char('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) write_char(buf[cnt--]);
}
}
inline void flush() {
fwrite(obuf, 1, oh - obuf, stdout);
}
/*
template
inline void R(T &x) {
static char c;
static bool iosig;
for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
if (c == '-') iosig = true;
for (x = 0; isdigit(c); c = getchar())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int MAXN = 300000 + 10;
struct node {
int left, right;
long long tot_s;
int tot_c, cnt[2];
} tree[MAXN * 20];
struct data {
int num, ori;
inline bool operator < (const data &a) const {
return num > a.num;
}
} a[MAXN];
int cnt;
int rk[MAXN], root[MAXN], b[MAXN];
inline void insert(int &cur, int l, int r, int x) {
tree[++cnt] = tree[cur], cur = cnt, tree[cur].tot_s += (long long)rk[x];
tree[cur].tot_c++, tree[cur].cnt[rk[x] & 1]++;
if (l == r) return ;
int mid = l + r >> 1;
if (x <= mid) insert(tree[cur].left, l, mid, x);
else insert(tree[cur].right, mid + 1, r, x);
}
int c[2];
long long ans;
inline void query_k_sum(int l, int r, int ql, int qr, int k) {
if (tree[qr].tot_c - tree[ql].tot_c == k) {
c[0] += tree[qr].cnt[0] - tree[ql].cnt[0];
c[1] += tree[qr].cnt[1] - tree[ql].cnt[1];
ans += tree[qr].tot_s - tree[ql].tot_s;
return ;
}
if (k == 0) return ;
int mid = l + r >> 1, ll = tree[ql].left, rl = tree[qr].left;
int temp = tree[rl].tot_c - tree[ll].tot_c;
if (temp <= k) {
c[0] += tree[rl].cnt[0] - tree[ll].cnt[0];
c[1] += tree[rl].cnt[1] - tree[ll].cnt[1];
ans += tree[rl].tot_s - tree[ll].tot_s;
query_k_sum(mid + 1, r, tree[ql].right, tree[qr].right, k - temp);
} else query_k_sum(l, mid, tree[ql].left, tree[qr].left, k);
}
inline int query_kth(int l, int r, int ql, int qr, int k, int type) {
if (l == r) return rk[l];
int mid = l + r >> 1, ll = tree[ql].left, rl = tree[qr].left;
int temp = tree[rl].cnt[type] - tree[ll].cnt[type];
if (temp >= k) {
return query_kth(l, mid, tree[ql].left, tree[qr].left, k, type);
} else return query_kth(mid + 1, r, tree[ql].right,
tree[qr].right, k - temp, type);
}
int n, q, l, r, k;
inline void solve_tree() {
R(n);
for (int i = 1; i <= n; ++i) R(a[i].num), a[i].ori = i;
std::sort(a + 1, a + n + 1);
for (int i = 1; i <= n; ++i) b[a[i].ori] = i, rk[i] = a[i].num;
for (int i = 1; i <= n; ++i)
root[i] = root[i - 1], insert(root[i], 1, n, b[i]);
}
inline void solve_query() {
R(q);
while (q--) {
R(l), R(r), R(k), ans = c[0] = c[1] = 0;
if (k > r - l + 1 || (k & 1)) {
W(-1), write_char('\n');
continue ;
}
query_k_sum(1, n, root[l - 1], root[r], k);
if ((c[0] & 1) || (c[1] & 1)) {
int sum[2];
long long ret = -1;
sum[0] = tree[root[r]].cnt[0] - tree[root[l - 1]].cnt[0];
sum[1] = tree[root[r]].cnt[1] - tree[root[l - 1]].cnt[1];
if (sum[0] != c[0]) {
int x1 = query_kth(1, n, root[l - 1], root[r], c[1], 1);
int x2 = query_kth(1, n, root[l - 1], root[r], c[0] + 1, 0);
ret = std::max(ret, ans - x1 + x2);
}
if (sum[1] != c[1]) {
int x1 = query_kth(1, n, root[l - 1], root[r], c[0], 0);
int x2 = query_kth(1, n, root[l - 1], root[r], c[1] + 1, 1);
ret = std::max(ret, ans - x1 + x2);
}
W(ret), write_char('\n');
} else W(ans), write_char('\n');
}
}
int main() {
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
solve_tree();
solve_query();
flush();
return 0;
}