Linux Kernel 学习笔记9:内核与用户层通信之netlink

(本章基于:Linux-4.4.0-37)

内核与用户空间通信有很多种通信方式,netlink是其中一种,其余的还有/proc、ioctl、sockopt、共享内存等等。netlink的特点是异步全双工。


netlink使用32位端口寻址,称为pid(与进程号没有关系),其中内核的pid地址为0,。netlink主要特性如下:

1 支持全双工、异步通信(当然同步也支持)

2 用户空间可使用标准的BSD socket接口(但netlink并没有屏蔽掉协议包的构造与解析过程,推荐使用libnl等第三方库)

3 在内核空间使用专用的内核API接口

4 支持多播(因此支持“总线”式通信,可实现消息订阅)

5 在内核端可用于进程上下文与中断上下文


基本数据结构

Linux Kernel 学习笔记9:内核与用户层通信之netlink_第1张图片

struct msghdr {
    void         *msg_name;       /* optional address */
    socklen_t     msg_namelen;    /* size of address */
    struct iovec *msg_iov;        /* scatter/gather array */
    size_t        msg_iovlen;     /* # elements in msg_iov */
    void         *msg_control;    /* ancillary data, see below */
    size_t        msg_controllen; /* ancillary data buffer len */
    int           msg_flags;      /* flags (unused) */
};

struct sockaddr_nl
{
    sa_family_t nl_family; /*该字段总是为AF_NETLINK */
    unsigned short nl_pad; /* 目前未用到,填充为0*/
    __u32 nl_pid; /* process pid */
    __u32 nl_groups; /* multicast groups mask */
};


struct sockaddr_nl是netlink通信地址,和我们通常socket编程中的sockaddr_in作用一样。pid表示通信端口,groups表示组,注意这里为希望加入多播组号的掩码,也就是说最多只支持32个组。
struct nlmsghdr
{
    __u32 nlmsg_len; /* Length of message including header */
    __u16 nlmsg_type; /* Message content */
    __u16 nlmsg_flags; /* Additional flags */
    __u32 nlmsg_seq; /* Sequence number */
    __u32 nlmsg_pid; /* Sending process PID */
};
Netlink报文的数据区由消息头和消息体构成,struct nlmsghdr即为消息头,消息体接在消息头后。


内核层操作

创建socket

static inline struct sock *
netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg);
net:  一般直接填&init_net

unit:协议类型,可自定义,如#define NETLINK_TEST 25

cfg:配置结构,类型如下:

/* optional Netlink kernel configuration parameters */
struct netlink_kernel_cfg {
	unsigned int	groups;
	unsigned int	flags;
	void		(*input)(struct sk_buff *skb);
	struct mutex	*cb_mutex;
	int		(*bind)(struct net *net, int group);
	void		(*unbind)(struct net *net, int group);
	bool		(*compare)(struct net *net, struct sock *sk);
};

groups:组编号;

input:接收回调函数,接收一个sk_buff结构,数据包含一个nlmsghdr协议头;

return:返回一个sock结构,返回NULL表示创建失败;


单播发送接口:

extern int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock);

(1) ssk:为函数 netlink_kernel_create()返回的socket。

(2) skb:存放消息,它的data字段指向要发送的netlink消息结构,而 skb的控制块保存了消息的地址信息,宏NETLINK_CB(skb)就用于方便设置该控制块。

(3) portid:pid端口。

(4) nonblock:表示该函数是否为非阻塞,如果为1,该函数将在没有接收缓存可利用时立即返回;而如果为0,该函数在没有接收缓存可利用定时睡眠。


多播发送接口:

extern int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid,
			     __u32 group, gfp_t allocation);
group:接收消息的多播组,该参数的每一个位代表一个多播组,因此如果发送给多个多播组;
allocation:内存分配类型,一般地为GFP_ATOMIC或GFP_KERNEL,GFP_ATOMIC用于原子的上下文(即不可以睡眠),而GFP_KERNEL用于非原子上下文。


释放socket

extern void netlink_kernel_release(struct sock *sk);


用户层操作

nlmsghdr结构常见操作:

NLMSG_SPACE(len): 将len加上nlmsghdr头长度,并按4字节对齐;

NLMSG_DATA(nlh): 返回数据区首地址;


创建socke

int netlink_create_socket(void)
{
        //create a socket
        return socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
}

bind

int netlink_bind(int sock_fd)
{
        struct sockaddr_nl addr;

        memset(&addr, 0, sizeof(struct sockaddr_nl));
        addr.nl_family = AF_NETLINK;
        addr.nl_pid = TEST_PID;
        addr.nl_groups = 0;

        return bind(sock_fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_nl));
}

发送接收:

使用sendmsg、recvmsg发送接收数据

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);


使用sendto、recvfrom发送接收数据

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);


例:

说明:用户层pid设置为100,应用层发送一条信息到内核,内核回复同样的信息;

内核层:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 

#define NETLINK_TEST (25)

static dev_t devId;
static struct class *cls = NULL;
struct sock *nl_sk = NULL;

static void
hello_cleanup(void)
{
        netlink_kernel_release(nl_sk);
        device_destroy(cls, devId);
        class_destroy(cls);
        unregister_chrdev_region(devId, 1);
}

static void
netlink_send(int pid, uint8_t *message, int len)
{
        struct sk_buff *skb_1;
        struct nlmsghdr *nlh;

        if(!message || !nl_sk) {
                return;
        }

        skb_1 = alloc_skb(NLMSG_SPACE(len), GFP_KERNEL);
        if( !skb_1 ) {
                printk(KERN_ERR "alloc_skb error!\n");
        }

        nlh = nlmsg_put(skb_1, 0, 0, 0, len, 0);
        NETLINK_CB(skb_1).portid = 0;
        NETLINK_CB(skb_1).dst_group = 0;
        memcpy(NLMSG_DATA(nlh), message, len);
        netlink_unicast(nl_sk, skb_1, pid, MSG_DONTWAIT);
}

static void
netlink_input(struct sk_buff *__skb)
{
        struct sk_buff *skb;
        char str[100];
        struct nlmsghdr *nlh;

        if( !__skb ) {
                return;
        }

        skb = skb_get(__skb);
        if( skb->len < NLMSG_SPACE(0)) {
                return;
        }

        nlh = nlmsg_hdr(skb);
        memset(str, 0, sizeof(str));
        memcpy(str, NLMSG_DATA(nlh), sizeof(str));
        printk(KERN_INFO "receive message (pid:%d):%s\n", nlh->nlmsg_pid, str);
        printk(KERN_INFO "space:%d\n", NLMSG_SPACE(0));
        printk(KERN_INFO "size:%d\n", nlh->nlmsg_len);
        netlink_send(nlh->nlmsg_pid, NLMSG_DATA(nlh), nlh->nlmsg_len - NLMSG_SPACE(0));

        return;
}

static __init int netlink_init(void)
{
        int result;
        struct netlink_kernel_cfg nkc;

        printk(KERN_WARNING "netlink init start!\n");

        //动态注册设备号
        if(( result = alloc_chrdev_region(&devId, 0, 1, "stone-alloc-dev") ) != 0) {
                printk(KERN_WARNING "register dev id error:%d\n", result);
                goto err;
        } else {
                printk(KERN_WARNING "register dev id success!\n");
        }
        //动态创建设备节点
        cls = class_create(THIS_MODULE, "stone-class");
        if(IS_ERR(cls)) {
                printk(KERN_WARNING "create class error!\n");
                goto err;
        }
        if(device_create(cls, NULL, devId, "", "hello%d", 0) == NULL) {
                printk(KERN_WARNING "create device error!\n");
                goto err;
        }

        //初始化netlink
        nkc.groups = 0;
        nkc.flags = 0;
        nkc.input = netlink_input;
        nkc.cb_mutex = NULL;
        nkc.bind = NULL;
        nkc.unbind = NULL;
        nkc.compare = NULL;
        nl_sk = netlink_kernel_create(&init_net, NETLINK_TEST, &nkc);
        if( !nl_sk ) {
                printk(KERN_ERR "[netlink] create netlink socket error!\n");
                goto err;
        }

        printk(KERN_ALERT "netlink init success!\n");
        return 0;
err:
        hello_cleanup();
        return -1;
}

static __exit void netlink_exit(void)
{
        hello_cleanup();
        printk(KERN_WARNING "netlink exit!\n");
}

module_init(netlink_init);
module_exit(netlink_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stone");

应用层1:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define NETLINK_TEST    (25)
#define MAX_PAYLOAD     (1024)
#define TEST_PID        (100)

int netlink_create_socket(void)
{
        //create a socket
        return socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
}

int netlink_bind(int sock_fd)
{
        struct sockaddr_nl addr;

        memset(&addr, 0, sizeof(struct sockaddr_nl));
        addr.nl_family = AF_NETLINK;
        addr.nl_pid = TEST_PID;
        addr.nl_groups = 0;

        return bind(sock_fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_nl));
}

int
netlink_send_message(int sock_fd, const unsigned char *message, int len,
                                        unsigned int pid, unsigned int group)
{
        struct nlmsghdr *nlh = NULL;
        struct sockaddr_nl dest_addr;
        struct iovec iov;
        struct msghdr msg;

        if( !message ) {
                return -1;
        }

        //create message
        nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(len));
        if( !nlh ) {
                perror("malloc");
                return -2;
        }
        nlh->nlmsg_len = NLMSG_SPACE(len);
        nlh->nlmsg_pid = TEST_PID;
        nlh->nlmsg_flags = 0;
        memcpy(NLMSG_DATA(nlh), message, len);

        iov.iov_base = (void *)nlh;
        iov.iov_len = nlh->nlmsg_len;
        memset(&dest_addr, 0, sizeof(struct sockaddr_nl));
        dest_addr.nl_family = AF_NETLINK;
        dest_addr.nl_pid = pid;
        dest_addr.nl_groups = group;

        memset(&msg, 0, sizeof(struct msghdr));
        msg.msg_name = (void *)&dest_addr;
        msg.msg_namelen = sizeof(struct sockaddr_nl);
        msg.msg_iov = &iov;
        msg.msg_iovlen = 1;

        //send message
        if( sendmsg(sock_fd, &msg, 0) < 0 )
        {
                printf("send error!\n");
                free(nlh);
                return -3;
        }

        free(nlh);
        return 0;
}

int
netlink_recv_message(int sock_fd, unsigned char *message, int *len)
{
        struct nlmsghdr *nlh = NULL;
        struct sockaddr_nl source_addr;
        struct iovec iov;
        struct msghdr msg;

        if( !message || !len ) {
                return -1;
        }

        //create message
        nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PAYLOAD));
        if( !nlh ) {
                perror("malloc");
                return -2;
        }
        iov.iov_base = (void *)nlh;
        iov.iov_len = NLMSG_SPACE(MAX_PAYLOAD);
        memset(&source_addr, 0, sizeof(struct sockaddr_nl));
        memset(&msg, 0, sizeof(struct msghdr));
        msg.msg_name = (void *)&source_addr;
        msg.msg_namelen = sizeof(struct sockaddr_nl);
        msg.msg_iov = &iov;
        msg.msg_iovlen = 1;

        if ( recvmsg(sock_fd, &msg, 0) < 0 ) {
                printf("recvmsg error!\n");
                return -3;
        }
        *len = nlh->nlmsg_len - NLMSG_SPACE(0);
        memcpy(message, (unsigned char *)NLMSG_DATA(nlh), *len);

        free(nlh);
        return 0;
}

int
main(int argc, char **argv)
{
        int sock_fd;
        char buf[MAX_PAYLOAD];
        int len;

        if( argc < 2) {
                printf("enter message!\n");
                exit(EXIT_FAILURE);
        }

        sock_fd = netlink_create_socket();
        if(sock_fd == -1) {
                printf("socket error!\n");
                return -1;
        }

        if( netlink_bind(sock_fd) < 0 ) {
                perror("bind");
                close(sock_fd);
                exit(EXIT_FAILURE);
        }

        netlink_send_message(sock_fd, argv[1], strlen(argv[1]) + 1, 0, 0);
        if( netlink_recv_message(sock_fd, buf, &len) == 0 ) {
                printf("recv:%s len:%d\n", buf, len);
        }

        close(sock_fd);
        return 0;
}

上面例子讲的是使用sendmsg、recvmsg。在应用层我们同样可以使用sendto、recvfrom发送接收数据,操作模式和UDP通信非常相似,区别是为了能成功接收数据,我们同样需要使用bind()绑定自身地址,但对于UDP这不是必须的;


应用层2:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define NETLINK_TEST    (25)
#define MAX_PAYLOAD     (1024)
#define TEST_PID        (100)

int netlink_create_socket(void)
{
        //create a socket
        return socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
}

int netlink_bind(int sock_fd)
{
        struct sockaddr_nl addr;

        memset(&addr, 0, sizeof(struct sockaddr_nl));
        addr.nl_family = AF_NETLINK;
        addr.nl_pid = TEST_PID;
        addr.nl_groups = 0;

        return bind(sock_fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_nl));
}

int
netlink_send_message(int sock_fd, const unsigned char *message, int len,
                                        unsigned int pid, unsigned int group)
{
        struct nlmsghdr *nlh = NULL;
        struct sockaddr_nl dest_addr;

        if( !message ) {
                return -1;
        }

        //create message
        nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(len));
        if( !nlh ) {
                perror("malloc");
                return -2;
        }
        nlh->nlmsg_len = NLMSG_SPACE(len);
        nlh->nlmsg_pid = TEST_PID;
        nlh->nlmsg_flags = 0;
        memcpy(NLMSG_DATA(nlh), message, len);

        memset(&dest_addr, 0, sizeof(struct sockaddr_nl));
        dest_addr.nl_family = AF_NETLINK;
        dest_addr.nl_pid = pid;
        dest_addr.nl_groups = group;

        //send message
        if( sendto(sock_fd, nlh, nlh->nlmsg_len, 0, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr_nl)) != nlh->nlmsg_len ) {
                printf("send error!\n");
                free(nlh);
                return -3;
        }

        free(nlh);
        return 0;
}

int
netlink_recv_message(int sock_fd, unsigned char *message, int *len)
{
        struct nlmsghdr *nlh = NULL;
        struct sockaddr_nl src_addr;
        socklen_t addrlen = sizeof(struct sockaddr_nl);

        if( !message || !len ) {
                return -1;
        }

        //create message
        nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PAYLOAD));
        if( !nlh ) {
                perror("malloc");
                return -2;
        }
        memset(&src_addr, 0, sizeof(struct sockaddr_nl));
        if( recvfrom(sock_fd, nlh, NLMSG_SPACE(MAX_PAYLOAD), 0, (struct sockaddr *)&src_addr, (socklen_t *)&addrlen) < 0 ) {
                printf("recvmsg error!\n");
                return -3;
        }
        *len = nlh->nlmsg_len - NLMSG_SPACE(0);
        memcpy(message, (unsigned char *)NLMSG_DATA(nlh), *len);

        free(nlh);
        return 0;
}

int
main(int argc, char **argv)
{
        int sock_fd;
        char buf[MAX_PAYLOAD];
        int len;

        if( argc < 2) {
                printf("enter message!\n");
                exit(EXIT_FAILURE);
        }

        sock_fd = netlink_create_socket();
        if(sock_fd == -1) {
                printf("socket error!\n");
                return -1;
        }

        if( netlink_bind(sock_fd) < 0 ) {
                perror("bind");
                close(sock_fd);
                exit(EXIT_FAILURE);
        }

        netlink_send_message(sock_fd, argv[1], strlen(argv[1]) + 1, 0, 0);
        if( netlink_recv_message(sock_fd, buf, &len) == 0 ) {
                printf("recv:%s len:%d\n", buf, len);
        }

        close(sock_fd);
        return 0;
}




你可能感兴趣的:(linux,kernel,学习笔记)