- 论文笔记:Deep Algorithm Unrolling for Blind Image Deblurring
爱学习的小菜鸡
论文笔记去模糊图像处理神经网络
这是一篇CVPR2020的去模糊论文,主要是通过传统与深度相结合,将迭代次数变成神经网络的层数,使网络结构的网络结构更加具有解释性。主要贡献:DeepUnrollingforBlindImageDeblurring(DUBLID):提出一种可解释的神经网络结构叫做DUBLID,首先提出一种迭代算法,该算法被认为是梯度域中传统的广义全变分正则方法(generalizedTV-regularizeda
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- [论文笔记] LLaMA3.1与Qwen2与Apple 技术报告中预训练方案对比
心心喵
论文笔记论文阅读深度学习人工智能
https://arxiv.org/pdf/2407.21075https://arxiv.org/pdf/2407.10671https://arxiv.org/pdf/2407.21783LLaMA3.1LLaMA3.1技术报告:https://ai.meta.com/blog/meta-llama-3-1/
- LLM时代的小模型思考:《What is the Role of Small Models in the LLM Era: A Survey》论文笔记
FrancisQiu
learningnlppaperreading论文阅读
论文:WhatistheRoleofSmallModelsintheLLMEra:ASurvey作者:LihuChenetal.单位:ImperialCollegeLondonAbstract问题:扩大模型大小会导致计算成本和能耗呈指数级增长,这使得这些模型对于学术研究人员和资源有限的企业来说不切实际小型模型(SMs)经常用于实际环境中,引发了关于小模型在LLM时代的作用的重要问题,且关注有限方法
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- [论文笔记] LLM大模型剪枝篇——2、剪枝总体方案
心心喵
论文笔记剪枝算法机器学习
https://github.com/sramshetty/ShortGPT/tree/mainMy剪枝方案(暂定):剪枝目标:1.5B—>100~600M剪枝方法:层粒度剪枝1、基于BI分数选择P%的冗余层,P=60~802、对前N%冗余层,直接删除fulllayer。N=20(N:剪枝崩溃临界点,LLaMA2在45%,Mistral-7B在35%,Qwen在20%,Phi-2在25%)对后(P
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- 论文笔记(七十二)Reward Centering(一)
墨绿色的摆渡人
文章论文阅读
RewardCentering(一)文章概括摘要1奖励中心化理论文章概括引用:@article{naik2024reward,title={RewardCentering},author={Naik,AbhishekandWan,YiandTomar,MananandSutton,RichardS},journal={arXivpreprintarXiv:2405.09999},year={202
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理深度学习笔记
Arxiv日期:2024.2.14机构:GoogleDeepMind/UniversityofToronto关键词长度泛化位置编码数据格式核心结论1.实验结论:十进制加法任务上的长度泛化最佳组合:FIRE位置编码随机化位置编码反向数据格式索引提示(indexhints,辅助定位)2.在适当的配置下,Transformer模型可以泛化到训练序列长度的2.5倍(例如从40位加法训练成功泛化到100位加
- 多模态论文笔记——DiT(Diffusion Transformer)
好评笔记
多模态论文笔记深度学习transformerDiT人工智能机器学习aigcstablediffusion
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Transformer架构图像生成方面的应用,将Diffusion和Transformer结合起来的模型:DiT。目前DiT已经成为了AIGC时代的新宠儿,视频和图像生成不可缺少的一部分。文章目录论文定义架构与传统(U-Net)扩散模型区别架构噪声调度策略与传统扩散的相同输入图像/条件信息的Patch化(Pat
- LLM论文笔记 14: The Impact of Positional Encoding on Length Generalization in Transformers
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2023.12.15机构:McGillUniversity/IBM/Facebook/ServiceNow关键词长度泛化位置编码CoT核心结论1.decoder-only中不显式使用位置编码(NoPE)可以提高长度泛化性能2.(证明了)decoder-onlytransformer如果NoPE同时具备绝对APE和RPE的能力3.暂存器(cot)对于长度泛化和任务相关,同时关注短期和
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:
[email protected])发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- TC-LLaVA论文笔记
0yumiwawa0
计算机视觉论文阅读
RoPE介绍理解LLM位置编码:RoPE|LinsightMotivation在基于视频的multimodallargelanguagemodel中,更好地利用视频提供的时序信息。MethodTemporal-AwareDualRoPE之前的RoPE公式:A(qTm,kFnVz)=Re[qTmkFnVzei(P(Tm)−P(FnVz))θ]A_{(q_{T_m},k_{F_nV_z})}=Re[q
- CNN-day5-经典神经网络LeNets5
谢眠
深度学习深度学习计算机视觉人工智能
经典神经网络-LeNets51998年YannLeCun等提出的第一个用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络参考:论文笔记:Gradient-BasedLearningAppliedtoDocumentRecognition-CSDN博客1网络模型结构整体结构解读:输入图像:32×32×1三个卷积层:C1:输入图片32×32,6个5×5卷积核,输出特征图大小28×28(3
- [论文笔记] llama3.2 蒸馏
心心喵
论文笔记论文阅读
参考链接:LLaMA3.2技术报告:GitHub-meta-llama/llama-stack:ModelcomponentsoftheLlamaStackAPIs[2407.21783]TheLlama3HerdofModelshttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/HuggingFac
- [论文笔记] Deepseek技术报告
心心喵
论文笔记论文阅读人工智能
1.总体概述背景与目标报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。介绍了两代模型:DeepSeek-R1-Zero(纯RL,无SFT冷启动数据)和DeepSeek-R1(在RL前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。核心思路直接在基础模型上应用大规模强化学习,利用
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 论文笔记(七十)DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(二)
墨绿色的摆渡人
文章论文阅读
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning(二)文章概括摘要:2.方法2.3.DeepSeek-R1:冷启动强化学习2.3.1.冷启动2.3.2.面向推理的强化学习2.3.3.拒绝采样与监督微调2.3.4.面向所有场景的强化学习2.4.蒸馏:赋予小模型推理能力文章概括引用:@article{g
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- [论文笔记] llama-factory 微调qwen2.5、llama3踩坑
心心喵
论文笔记深度学习人工智能
一、bug1、pre-tokenize的时候,会OOM解决:在yaml文件中添加streaming参数#tokenizestreaming:Truemax_steps:10000https://github.com/hiyouga/LLaMA-Factory/blob/3a023bca2a502810a436cfba7708df164754ea62/src/llamafactory/hparams
- [论文笔记] Megatron: mistral sliding window(ImportError: /workspace/venv/lib/python3.10/site-packag报错解决)
心心喵
论文笔记论文阅读
pyTorch—TransformerEngine1.2.1documentation论文:https://arxiv.org/pdf/2310.06825.pdftransformerengine的slidingwindow是用了flashatttention(新版本2以上,这里用的最新版本2.5.2)里对sliding_window的实现。所以不需要用transformerengine。直接用
- [论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis
沉迷单车的追风少年
深度学习-计算机视觉sketch深度学习计算机视觉
前言:2020年顶会同时出现了两篇很有意思的论文《Self-SupervisedSketch-to-ImageSynthesis》和《UnsupervisedSketch-to-PhotoSynthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。目录主要贡献主要工作域转换模型TOMPS:边缘图、铅笔画图、草图sketch之间的区别
- 【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
Activewaste
#Anchor-free#特征层面#小目标检测DuBoxanchor-free
&Title:DuBox:No-PriorBoxObjectionDetectionviaResidualDualScaleDetectorsGithubaddrNone&Summary介绍了一种新的一阶段检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的残差。Dubox增强了启发式引导的能力,进一步使
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比