python_NLP实战之中文垃圾邮件分类

一、机器学习训练的要素

数据、转换数据的模型、衡量模型好坏的损失函数、调整模型权重以便最小化损失函数的算法

二、机器学习的组成部分

1、按照学习结果分类

预测、聚类、分类、降维

2、按照学习方法分类

监督学习,无监督学习,半监督学习,增强学习

补充:特征提取(BOW   TFIDF  Ngram)

三、实战中文垃圾文件分类

1、数据提取

def get_data():
    '''
    获取数据,数据的载入
    :return: 文本数据,对应的labels
    '''
    with open("data/ham_data.txt", encoding="utf8") as ham_f, open("data/spam_data.txt", encoding="utf8") as spam_f:
        ham_data = ham_f.readlines()
        spam_data = spam_f.readlines()

        ham_label = np.ones(len(ham_data)).tolist()
        spam_label = np.zeros(len(spam_data)).tolist()

        corpus = ham_data + spam_data

        labels = ham_label + spam_label

    return corpus, labels


def prepare_datasets(corpus, labels, test_data_proportion=0.3):
    '''
    将数据分为训练集和测试集
    :param corpus: 文本数据
    :param labels: label数据
    :param test_data_proportion:测试数据占比 
    :return: 训练数据,测试数据,训练label,测试label
    '''
    train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
                                                        test_size=test_data_proportion, random_state=42)
    return train_X, test_X, train_Y, test_Y

2、对数据进行规整化和预处理

import re
import string
import jieba

# 加载停用词
with open("dict/stop_words.utf8", encoding="utf8") as f:
    stopword_list = f.readlines()


def tokenize_text(text):
    tokens = jieba.cut(text)
    tokens = [token.strip() for token in tokens]
    return tokens


def remove_special_characters(text):
    tokens = tokenize_text(text)
    pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
    filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
    filtered_text = ' '.join(filtered_tokens)
    return filtered_text


def remove_stopwords(text):
    tokens = tokenize_text(text)
    filtered_tokens = [token for token in tokens if token not in stopword_list]
    filtered_text = ''.join(filtered_tokens)
    return filtered_text


def normalize_corpus(corpus, tokenize=False):
    normalized_corpus = []
    for text in corpus:

        text = remove_special_characters(text)
        text = remove_stopwords(text)
        normalized_corpus.append(text)
        if tokenize:
            text = tokenize_text(text)
            normalized_corpus.append(text)

    return normalized_corpus

3、提取特征

from sklearn.feature_extraction.text import CountVectorizer


def bow_extractor(corpus, ngram_range=(1, 1)):
    vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features


from sklearn.feature_extraction.text import TfidfTransformer


def tfidf_transformer(bow_matrix):
    transformer = TfidfTransformer(norm='l2',
                                   smooth_idf=True,
                                   use_idf=True)
    tfidf_matrix = transformer.fit_transform(bow_matrix)
    return transformer, tfidf_matrix


from sklearn.feature_extraction.text import TfidfVectorizer


def tfidf_extractor(corpus, ngram_range=(1, 1)):
    vectorizer = TfidfVectorizer(min_df=1,
                                 norm='l2',
                                 smooth_idf=True,
                                 use_idf=True,
                                 ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features

4、训练分类器


def train_predict_evaluate_model(classifier,
                                 train_features, train_labels,
                                 test_features, test_labels):
    # build model
    classifier.fit(train_features, train_labels)
    # predict using model
    predictions = classifier.predict(test_features)
    # evaluate model prediction performance
    get_metrics(true_labels=test_labels,
                predicted_labels=predictions)
    return predictions



from sklearn.naive_bayes import MultinomialNB
    from sklearn.linear_model import SGDClassifier
    from sklearn.linear_model import LogisticRegression
    mnb = MultinomialNB()
    svm = SGDClassifier(loss='hinge', n_iter=100)
    lr = LogisticRegression()

    # 基于词袋模型的多项朴素贝叶斯
    print("基于词袋模型特征的贝叶斯分类器")
    mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
                                                       train_features=bow_train_features,
                                                       train_labels=train_labels,
                                                       test_features=bow_test_features,
                                                       test_labels=test_labels)

    # 基于词袋模型特征的逻辑回归
    print("基于词袋模型特征的逻辑回归")
    lr_bow_predictions = train_predict_evaluate_model(classifier=lr,
                                                      train_features=bow_train_features,
                                                      train_labels=train_labels,
                                                      test_features=bow_test_features,
                                                      test_labels=test_labels)

    # 基于词袋模型的支持向量机方法
    print("基于词袋模型的支持向量机")
    svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
                                                       train_features=bow_train_features,
                                                       train_labels=train_labels,
                                                       test_features=bow_test_features,
                                                       test_labels=test_labels)


    # 基于tfidf的多项式朴素贝叶斯模型
    print("基于tfidf的贝叶斯模型")
    mnb_tfidf_predictions = train_predict_evaluate_model(classifier=mnb,
                                                         train_features=tfidf_train_features,
                                                         train_labels=train_labels,
                                                         test_features=tfidf_test_features,
                                                         test_labels=test_labels)
    # 基于tfidf的逻辑回归模型
    print("基于tfidf的逻辑回归模型")
    lr_tfidf_predictions=train_predict_evaluate_model(classifier=lr,
                                                         train_features=tfidf_train_features,
                                                         train_labels=train_labels,
                                                         test_features=tfidf_test_features,
                                                         test_labels=test_labels)


    # 基于tfidf的支持向量机模型
    print("基于tfidf的支持向量机模型")
    svm_tfidf_predictions = train_predict_evaluate_model(classifier=svm,
                                                         train_features=tfidf_train_features,
                                                         train_labels=train_labels,
                                                         test_features=tfidf_test_features,
                                                         test_labels=test_labels)

5、评价指标

显示部分测试结果

import re

    num = 0
    for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions):
        if label == 0 and predicted_label == 0:
            print('邮件类型:', label_name_map[int(label)])
            print('预测的邮件类型:', label_name_map[int(predicted_label)])
            print('文本:-')
            print(re.sub('\n', ' ', document))

            num += 1
            if num == 4:
                break

    num = 0
    for document, label, predicted_label in zip(test_corpus, test_labels, svm_tfidf_predictions):
        if label == 1 and predicted_label == 0:
            print('邮件类型:', label_name_map[int(label)])
            print('预测的邮件类型:', label_name_map[int(predicted_label)])
            print('文本:-')
            print(re.sub('\n', ' ', document))

            num += 1
            if num == 4:
                break

 

你可能感兴趣的:(python自然语言处理实战)