- 【亲测免费】 懒人Vim配置:lazyvim指南
申华昶
懒人Vim配置:lazyvim指南懒人Vim配置(lazyvim)是一款专为追求高效简化工作流程的开发者设计的Vim配置集。本指南旨在帮助您快速了解并上手lazyvim,以享受定制化编辑器带来的高效率。1.项目介绍lazyvim是一个精心打造的Vim配置方案,它基于简约而不失强大的设计理念,致力于提供开箱即用且高度可定制化的Vim环境。这个项目旨在减少初学者和经验丰富的开发者在配置Vim上的时间消
- Python爬虫实战:批量下载小红书笔记图片的全流程技术解析
Python爬虫项目
2025年爬虫实战项目python爬虫笔记开发语言音视频github
1.引言:为什么要爬取小红书笔记图片小红书作为新兴的生活方式分享平台,聚集了大量高质量原创笔记内容,涵盖时尚、美妆、旅游、美食等多领域。笔记中的图片往往是内容的核心,批量下载小红书笔记图片,有助于:内容归档与备份数据分析与用户行为研究图像识别与机器学习训练电商推广及内容再加工但小红书对内容保护做得较好,爬取难度较高,需要结合多技术手段突破。2.小红书平台特点与爬取难点动态加载与API接口多变:页面
- Spring Boot(六)集成 MyBatis 操作 MySQL 8
一、简介1.1MyBatis介绍MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获取结果集。1.2MyBatis发展史MyBatis原本是apache的一个开源项目iBatis,2010年这个项目由apachesoftwarefoundation迁移到了googlecode,并且改名为MyBatis,201
- 基于densenet网络创新的肺癌识别研究
深度学习乐园
深度学习人工智能densenet
获取项目源码点击文末名片摘要本项目针对肺癌CT图像识别等医学影像分析场景,基于DenseNet网络进行创新性改进,综合引入多尺度卷积、深度可分离卷积、注意力机制以及空间金字塔池化(SPP)等模块,以期提升对不同大小的肺结节及关键病理特征的识别能力。同时,通过深度可分离卷积和可选的通道剪枝等策略,将网络参数量和计算开销显著降低,为实际临床应用(如实时诊断系统)提供可行性。本项目的核心内容包括以下几个
- 基于python的图像识别_基于PYTHON的图片文字识别
文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。一般包括以下几个过程:图像输入、图像前处理、预识别:1图像输入:对于不同的图像格式,有着不同的存储格式,不同的压缩方式,目前有OpenCV、CxImage等开源项目。2预处理:主要包括二值化,噪声去除,倾斜较正等。2.1二值化:对摄像头拍摄的图片,大多数是彩色图像,彩色图像所含信息量巨大,对于图片的内容,我们可以简单的分为前景与背景,为
- JUnit 5实验室:单元测试导演养成手册 —— 从单镜头到好莱坞级参数化大片的拍摄指南
zhysunny
Java类库junit单元测试java
目录一、片场基础设备:核心注解速成课1.1导演必备三件套1.2高级剪辑技巧二、镜头质量把控:断言与假设的艺术2.1监视器全家福2.2绿幕拍摄原则(假设条件)三、好莱坞级拍摄:参数化测试工厂3.1基础款群演生成器3.2定制化群演阵容3.3动态生成剧本四、特效工作室:高级扩展玩法4.1自定义参数来源4.2片场监听设备五、零NG原则:最佳拍摄实践5.1测试剧本命名法5.2片场隔离原则5.3数字替身管理局
- 插板式系统的“生命线“:EtherCAT分布式供电该如何实现?
ZLG 致远电子
iot
在ZIO系列插板式模组系统中,EtherCAT分布式供电如同设备的血液循环网络,其供电稳定性直接决定系统可靠性。本文将从电流计算到电源扩展,为您讲解EtherCAT分布式供电该如何实现。ZIO系列插板式模组的电源介绍ZIO系列插板式I/O模块是ZLG开发的可灵活设计的远程I/O扩展模块。该系列产品由耦合器、数字I/O、电机驱动、模拟量、电源等功能模块组成。ZIO系列可以通过定制化的底板集成各类接口
- 微算法科技研究量子视觉计算,利用量子力学原理提升传统计算机视觉任务的性能
计算机视觉,作为人工智能领域的一个重要分支,致力于模拟人类视觉系统对图像或视频等视觉数据的理解与分析能力。它涵盖了图像识别、目标检测、图像分割等一系列复杂任务,广泛应用于自动驾驶、医疗影像分析、安防监控等多个领域。然而,随着数据规模的不断膨胀和任务复杂度的日益提升,传统计算机视觉算法在处理大规模、高维度数据时遇到了性能瓶颈。微算法科技(NASDAQ:MLGO)研究量子视觉计算,探索量子计算与经典卷
- GoView 强势入驻 GitCode:拖拽低代码,打造高颜值数据大屏
GitCode 代码君
gitcode低代码开源
信息可视化时代,数字大屏日益成为展示核心KPI、运营状态、监控预警的主流形式。然而,用传统方式开发一个定制化数字大屏需要解决多少问题?1.繁复的数据源集成,各种不同的协议和格式……2.让人晕头转向的可视化逻辑,调动艰难的样式、布局、动画,和往往难以统一的风格3.牵一发而动全身的代码结构,就想换个主题色结果开启的全局CSS大冒险……现在,一个开源项目即可搞定上述问题——拖拽式低代码数字可视化平台Go
- Android 15.0 根据app包名授予app监听系统通知权限
安卓兼职framework应用工程师
android15.0Rom定制化系列讲解androidromframework监听系统通知权限
1.概述在15.0的系统rom产品定制化开发中,在一些产品rom定制化开发中,系统内置的第三方app需要开启系统通知权限,然后可以在app中,监听系统所有通知,来做个通知中心的功能,所以需要授权获取系统通知的权限,然后来顺利的监听系统通知。来做系统通知的功能,接下来来实现这个功能2.根据app包名授予app监听系统通知权限的核心类packages/apps/Settings/src/com/and
- 揭秘智能家居定制平板:其在不同生活场景中的常见应用与重要性
华一精品Adreamer
平板
在智能家居浪潮席卷全球的当下,人与居住空间的交互方式正经历着前所未有的变革。曾经分散在手机APP、语音指令与零星面板上的控制权,如今正迅速向一个更直观、更强大、更契合场景的中心汇聚——定制化平板电脑。这已非简单的一块触摸屏,而是深度融合场景需求、重塑家居交互逻辑、并驱动行业向沉浸式体验跃迁的战略级中枢。一、智能家居发展趋势智能家居行业已经从最初的单品智能,逐步迈入了全屋智能与场景智能的深水区。根据
- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- python通过pyautogui库来控制鼠标和键盘
目录前言1.关于屏幕和鼠标位置2.鼠标移动、拖拽、点击、滚动和运动3.使用键盘4.消息框5.屏幕截图6.图像识别定位前言PyAutoGUI是一个纯Python的GUI自动化工具,通过它可以用程序自动控制鼠标和键盘操作。它支持Windows,MacOS和Linux。安装:pipinstallpyautogui基本用法看代码,非常简单易用。importpyautoguipyautogui.click(
- 定制化CRM---基于odoo17开发的道与术
花好月圆春祺夏安
crmerpodoo17定制化
引言:在比特与原子间架起桥梁——制造业CRM的破局之道客户关系管理(CRM),这个诞生于信息时代的词汇,长久以来似乎与车间轰鸣、元件流转的制造业保持着一种微妙的距离。传统的CRM软件,擅长管理销售漏斗、追踪客户互动,但在面对制造业盘根错节的业务流程——从新品研发、客户准入、多维度报价,到复杂的信用控制、订单交付和跨系统协同——时,往往显得力不从心,如同一件剪裁精美的西装,却穿在了需要挥汗如雨的工程
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 人工智能怎么入门?零基础入门指南:从小白到AI实战者的第一步
OpenCV图像识别
人工智能人工智能计算机视觉自然语言处理神经网络机器学习
人工智能(AI)是当今最具前景的科技领域之一。从聊天机器人到自动驾驶,从图像识别到语音翻译,AI正在以前所未有的速度改变世界。但对于初学者来说,一个最常见的问题是:“我没有基础,也不是学数学或计算机的,人工智能还能学吗?我该怎么入门?”答案是:可以学,而且你并不孤单。越来越多的人正在以“跨专业、转行、自学”的方式进入AI领域。关键是,你需要一个清晰的入门路径,理解应该先做什么、学什么、避开什么误区
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Coze平台实战:如何精细配置Bot人设与回复逻辑提升企业服务效能
charles666666
人工智能产品经理transformer
数字化转型的浪潮中,智能客服和自动化服务已经成为企业提升效率、优化用户体验的关键工具。Coze平台作为一款强大的智能服务解决方案,提供了丰富的配置选项,能够帮助企业构建高度定制化的智能服务Bot。然而,如何通过精细配置Bot的人设和回复逻辑,真正提升企业服务效能?本文将结合实战经验,分享一些关键策略和技巧。一、为什么Bot人设决定智能服务成败?我们在为客户部署Coze时发现,Bot人设绝不是简单的
- android 10.0 设置默认中文系统settings 语言列表显示不可作为系统语言使用
安卓兼职framework应用工程师
android10.0Rom开发疑难问题分析android10.0Rom定制化高级进阶androidsettings默认中文系统语言不可作为系统语言使用
1.前言在10.0的系统rom定制化开发中,在开发国内项目的时候,需要设置默认语言为中文,然后再设置默认语言项为zh-CN时,这是系统设置语言列表下方显示不可作为系统语言使用,为了解决这个问题,就需要相关的分析,然后看怎么处理这个问题2.设置默认中文系统settings语言列表显示不可作为系统语言使用的核心类packages/apps/Settings/res/layout/locale_drag
- 基于openlayers开发北斗应用支撑平台
合抱阴阳
openlayersunix服务器
北斗应用支撑平台是基于中国自主研发的北斗卫星导航系统(BDS)构建的技术服务平台,旨在为各行业提供精准定位、导航、授时(PNT)、短报文通信等核心功能,并支持二次开发与定制化应用。以下是关于北斗应用支撑平台的详细介绍:###**1.核心功能**-**高精度定位**:通过北斗地基增强系统(如CORS站)实现厘米级/毫米级定位,适用于测绘、无人驾驶、智慧农业等领域。-**全球短报文通信**:北斗独有的
- 视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用
原文链接:https://tecdat.cn/?p=42891原文出处:拓端数据部落公众号分析师:ZiqiYe视频讲解:多层感知机MLP与卷积神经网络CNN在服装图像识别中的应用作为数据科学领域的从业者,我们常面临这样的挑战:如何让机器真正“看懂”图像中的信息?在为客户完成服装零售行业的图像识别时,这一问题尤为突出。追溯图像识别技术的发展,早期依赖人工设计特征,如边缘检测、纹理分析等,效率低下且适
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- 鸟类识别与分类相关数据集
Bryan Ding
分类数据挖掘人工智能
随着深度学习技术的快速发展,其在图像识别、语音识别等领域取得了显著的成果。鸟类识别作为生态学研究的重要内容,对于物种多样性保护、生态环境监测等领域具有深远的影响。将深度学习技术应用于鸟类识别,有望提高识别的准确性和效率,为鸟类学研究提供有力支持。本文综述了近年来深度学习在鸟类识别中的应用进展,包括基于图像和声音的鸟类识别系统,分析了其技术框架、实现方法以及在实际应用中的效果。通过对相关文献的梳理,
- Android 13 设置界面会判断当前屏幕的大小,如果是大屏,则为左右屏显示
安卓兼职framework应用工程师
android13.0Rom定制化高级进阶androidromsettings加载菜单屏幕大小
1.前言在13.0的系统rom定制化开发中,在某些时候,在大屏设备中,设置新增了左右分屏的功能,就是左边显示主菜单,右边显示一级菜单的功能,某些情况下不需要,接下来关闭这个功能2.设置界面会判断当前屏幕的大小,如果是大屏,则为左右屏显示的核心类packages/apps/Settings/src/com/android/settings/homepage/SettingsHomepageActiv
- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- Apple Sensor-Fusion 架构全解析:多模态语义图像感知系统设计与实战路径
观熵
影像技术全景图谱:架构调优与实战架构影像Camera
AppleSensor-Fusion架构全解析:多模态语义图像感知系统设计与实战路径关键词:AppleA系列、SensorFusion、语义图像感知、IMU+Camera协同、图像识别、ARKit、视觉惯性融合、多模态协同计算、CoreMotion、ISP语义路径摘要:Apple自A13及其后续SoC架构中,持续深化Sensor-Fusion与图像语义感知的协同设计,构建出以ISP、NPU、IMU
- Mybatis
微风粼粼
mybatistomcatjava
1、概述什么是mybatis?MyBatis是一个基于Java的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis消除了几乎所有的JDBC代码和参数的手动设置以及结果集的检索。MyBatis使用简单的XML或注解用于配置和原始映射,将接口和Java的POJOs(PlainOrdinaryJavaObjects,普通的Java对象)映射成数据库中的记录。它是一款半自动的ORM持久层
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持