MobileNet-SSD——deploy.prototxt解析

name: "MobileNet-SSD"     //##表示名称,可随意取
input: "data"            // ##定义input名为data
input_shape {              
  dim: 1                  //##batch_size=1
  dim: 3                  //##num_channels=3
  dim: 300               // ##input_height=300
  dim: 300               // ##input_width=300
}
layer {
  name: "conv0"          // ##表示该层的名称,可随意取
  type: "Convolution"     //##该表示层特性,如relu,type=ReLU,pooling,type=Poolin,这里为卷积层
  bottom: "data"          //##每一层用bottom来输入数据,这里输入为input data
  top: "conv0"            //##每一层用top来输出数据 output data
  param {                // ##定义该层的参数信息
    lr_mult: 0.1         // ##学习率,但是最终的学习率需要乘以solver.prototxt配置文件中的base_lr。如果有两个 lr_mult, 则第一个表示 weight 的学习率,第二个表示 bias 的                               学习率  。一般 bias 的学习率是 weight 学习率的2倍’
    decay_mult: 0.1       //##权值衰减,为了避免模型的over-fitting,需要对cost function加入规范项
  }
  convolution_param {
    num_output: 32        //##卷积核(filter)的个数
    bias_term: false      //##是否开启偏置项,默认为true, 开启
    pad: 1             // ##扩充边缘,默认为0,不扩充。扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充                             了4个像素,这样卷积运算之后的特征图就不会变小。 也可以通过pad_h和pad_w来分别设定。
    kernel_size: 3       // ##卷积核的大小。如果卷积核的长和宽不等,需要用 kernel_h 和 kernel_w 分别设定
    stride: 2             //##卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
    weight_filler {       //##权值初始化。 默认为“constant”,值全为0. 很多时候我们用”xavier”算法来进行初始化,也可以设置为”gaussian”
      type: "msra"
    }
  }
}

layer {
  name: "conv0/bn"        //##卷积层conv0BN
  type: "BatchNorm"       //##batch归一化,BatchNorm主要做了两部分:1是对输入进行归一化,对应BatchNorm 层;2是归一化后进行平移缩放,对应Scale 层。在Caffe 中,一般一个                                 BatchNorm 层后接 一个 Scale 层
  bottom: "conv0"        // ##输入的是卷积层conv0
  top: "conv0"            //##输出也是卷积层conv0
  param {
    lr_mult: 0   
    decay_mult: 0   
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}

layer {
  name: "conv0/scale"
  type: "Scale"         
  bottom: "conv0"
  top: "conv0"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true       //##在实现的时候要注意的是由于Scale需要实现平移功能,所以要把bias_term项设为true 
    bias_filler {        // ##偏置项的初始化。一般设置为”constant”, 值全为0。省略了type:“constant”。应该为bias_filler {type: "constant"    value: 0}
      value: 0
    }
  }
}
layer {
  name: "conv0/relu"
  type: "ReLU"
  bottom: "conv0"
  top: "conv0"
}


layer {
  name: "conv1/dw"
  type: "Convolution"
  bottom: "conv0"
  top: "conv1/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 32           //##group参数,其意思是将对应的输入通道与输出通道数进行分组。卷积分组可以减少网络的参数,至于是否还有其他的作用就不清楚了。比如输入数据大小为
                          90x100x100x32 90是数据批大小 100x100是图像数据shape,32是通道数,要经过一个3x3x48的卷积,group默认是1就是全连接的卷积层,如果group是2,那                               么对应要将输入的32个通道分成2个16的通道,将输出的48个通道分成2个24的通道。对输出的2个24的通道,第一个24通道与输入的第一个16通道进行全卷积,第                          二个24通道与输入的第二个16通道进行全卷积。极端情况下,输入输出通道数相同,比如为32,group大小也为32,那么每个输出卷积核,只与输入的对应的通道                          进行卷积。

    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}


layer {
  name: "conv1/dw/bn"
  type: "BatchNorm"
  bottom: "conv1/dw"
  top: "conv1/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv1/dw/scale"
  type: "Scale"
  bottom: "conv1/dw"
  top: "conv1/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv1/dw/relu"
  type: "ReLU"
  bottom: "conv1/dw"
  top: "conv1/dw"
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "conv1/dw"
  top: "conv1"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 64
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv1/bn"
  type: "BatchNorm"
  bottom: "conv1"
  top: "conv1"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv1/scale"
  type: "Scale"
  bottom: "conv1"
  top: "conv1"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv1/relu"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}

layer {
  name: "conv2/dw"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 64
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    group: 64
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv2/dw/bn"
  type: "BatchNorm"
  bottom: "conv2/dw"
  top: "conv2/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv2/dw/scale"
  type: "Scale"
  bottom: "conv2/dw"
  top: "conv2/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv2/dw/relu"
  type: "ReLU"
  bottom: "conv2/dw"
  top: "conv2/dw"
}

layer {
  name: "conv2"
  type: "Convolution"
  bottom: "conv2/dw"
  top: "conv2"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv2/bn"
  type: "BatchNorm"
  bottom: "conv2"
  top: "conv2"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv2/scale"
  type: "Scale"
  bottom: "conv2"
  top: "conv2"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv2/relu"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}

layer {
  name: "conv3/dw"
  type: "Convolution"
  bottom: "conv2"
  top: "conv3/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 128
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv3/dw/bn"
  type: "BatchNorm"
  bottom: "conv3/dw"
  top: "conv3/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv3/dw/scale"
  type: "Scale"
  bottom: "conv3/dw"
  top: "conv3/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv3/dw/relu"
  type: "ReLU"
  bottom: "conv3/dw"
  top: "conv3/dw"
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "conv3/dw"
  top: "conv3"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv3/bn"
  type: "BatchNorm"
  bottom: "conv3"
  top: "conv3"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv3/scale"
  type: "Scale"
  bottom: "conv3"
  top: "conv3"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv3/relu"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}

layer {
  name: "conv4/dw"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    group: 128
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv4/dw/bn"
  type: "BatchNorm"
  bottom: "conv4/dw"
  top: "conv4/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv4/dw/scale"
  type: "Scale"
  bottom: "conv4/dw"
  top: "conv4/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv4/dw/relu"
  type: "ReLU"
  bottom: "conv4/dw"
  top: "conv4/dw"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv4/dw"
  top: "conv4"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv4/bn"
  type: "BatchNorm"
  bottom: "conv4"
  top: "conv4"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv4/scale"
  type: "Scale"
  bottom: "conv4"
  top: "conv4"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv4/relu"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}

layer {
  name: "conv5/dw"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 256
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv5/dw/bn"
  type: "BatchNorm"
  bottom: "conv5/dw"
  top: "conv5/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv5/dw/scale"
  type: "Scale"
  bottom: "conv5/dw"
  top: "conv5/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv5/dw/relu"
  type: "ReLU"
  bottom: "conv5/dw"
  top: "conv5/dw"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv5/dw"
  top: "conv5"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv5/bn"
  type: "BatchNorm"
  bottom: "conv5"
  top: "conv5"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv5/scale"
  type: "Scale"
  bottom: "conv5"
  top: "conv5"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv5/relu"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}

layer {
  name: "conv6/dw"
  type: "Convolution"
  bottom: "conv5"
  top: "conv6/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    group: 256
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv6/dw/bn"
  type: "BatchNorm"
  bottom: "conv6/dw"
  top: "conv6/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv6/dw/scale"
  type: "Scale"
  bottom: "conv6/dw"
  top: "conv6/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv6/dw/relu"
  type: "ReLU"
  bottom: "conv6/dw"
  top: "conv6/dw"
}
layer {
  name: "conv6"
  type: "Convolution"
  bottom: "conv6/dw"
  top: "conv6"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv6/bn"
  type: "BatchNorm"
  bottom: "conv6"
  top: "conv6"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv6/scale"
  type: "Scale"
  bottom: "conv6"
  top: "conv6"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv6/relu"
  type: "ReLU"
  bottom: "conv6"
  top: "conv6"
}
layer {
  name: "conv7/dw"
  type: "Convolution"
  bottom: "conv6"
  top: "conv7/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}

layer {
  name: "conv7/dw/bn"
  type: "BatchNorm"
  bottom: "conv7/dw"
  top: "conv7/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv7/dw/scale"
  type: "Scale"
  bottom: "conv7/dw"
  top: "conv7/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv7/dw/relu"
  type: "ReLU"
  bottom: "conv7/dw"
  top: "conv7/dw"
}
layer {
  name: "conv7"
  type: "Convolution"
  bottom: "conv7/dw"
  top: "conv7"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv7/bn"
  type: "BatchNorm"
  bottom: "conv7"
  top: "conv7"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv7/scale"
  type: "Scale"
  bottom: "conv7"
  top: "conv7"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv7/relu"
  type: "ReLU"
  bottom: "conv7"
  top: "conv7"
}
layer {
  name: "conv8/dw"
  type: "Convolution"
  bottom: "conv7"
  top: "conv8/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}

layer {
  name: "conv8/dw/bn"
  type: "BatchNorm"
  bottom: "conv8/dw"
  top: "conv8/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv8/dw/scale"
  type: "Scale"
  bottom: "conv8/dw"
  top: "conv8/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv8/dw/relu"
  type: "ReLU"
  bottom: "conv8/dw"
  top: "conv8/dw"
}
layer {
  name: "conv8"
  type: "Convolution"
  bottom: "conv8/dw"
  top: "conv8"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv8/bn"
  type: "BatchNorm"
  bottom: "conv8"
  top: "conv8"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv8/scale"
  type: "Scale"
  bottom: "conv8"
  top: "conv8"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv8/relu"
  type: "ReLU"
  bottom: "conv8"
  top: "conv8"
}

layer {
  name: "conv9/dw"
  type: "Convolution"
  bottom: "conv8"
  top: "conv9/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv9/dw/bn"
  type: "BatchNorm"
  bottom: "conv9/dw"
  top: "conv9/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv9/dw/scale"
  type: "Scale"
  bottom: "conv9/dw"
  top: "conv9/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv9/dw/relu"
  type: "ReLU"
  bottom: "conv9/dw"
  top: "conv9/dw"
}
layer {
  name: "conv9"
  type: "Convolution"
  bottom: "conv9/dw"
  top: "conv9"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv9/bn"
  type: "BatchNorm"
  bottom: "conv9"
  top: "conv9"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv9/scale"
  type: "Scale"
  bottom: "conv9"
  top: "conv9"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv9/relu"
  type: "ReLU"
  bottom: "conv9"
  top: "conv9"
}
layer {
  name: "conv10/dw"
  type: "Convolution"
  bottom: "conv9"
  top: "conv10/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv10/dw/bn"
  type: "BatchNorm"
  bottom: "conv10/dw"
  top: "conv10/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv10/dw/scale"
  type: "Scale"
  bottom: "conv10/dw"
  top: "conv10/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv10/dw/relu"
  type: "ReLU"
  bottom: "conv10/dw"
  top: "conv10/dw"
}
layer {
  name: "conv10"
  type: "Convolution"
  bottom: "conv10/dw"
  top: "conv10"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv10/bn"
  type: "BatchNorm"
  bottom: "conv10"
  top: "conv10"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv10/scale"
  type: "Scale"
  bottom: "conv10"
  top: "conv10"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv10/relu"
  type: "ReLU"
  bottom: "conv10"
  top: "conv10"
}

layer {
  name: "conv11/dw"
  type: "Convolution"
  bottom: "conv10"
  top: "conv11/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv11/dw/bn"
  type: "BatchNorm"
  bottom: "conv11/dw"
  top: "conv11/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv11/dw/scale"
  type: "Scale"
  bottom: "conv11/dw"
  top: "conv11/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv11/dw/relu"
  type: "ReLU"
  bottom: "conv11/dw"
  top: "conv11/dw"
}
layer {
  name: "conv11"
  type: "Convolution"
  bottom: "conv11/dw"
  top: "conv11"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv11/bn"
  type: "BatchNorm"
  bottom: "conv11"
  top: "conv11"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv11/scale"
  type: "Scale"
  bottom: "conv11"
  top: "conv11"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv11/relu"
  type: "ReLU"
  bottom: "conv11"
  top: "conv11"
}

layer {
  name: "conv12/dw"
  type: "Convolution"
  bottom: "conv11"
  top: "conv12/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    group: 512
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv12/dw/bn"
  type: "BatchNorm"
  bottom: "conv12/dw"
  top: "conv12/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv12/dw/scale"
  type: "Scale"
  bottom: "conv12/dw"
  top: "conv12/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv12/dw/relu"
  type: "ReLU"
  bottom: "conv12/dw"
  top: "conv12/dw"
}
layer {
  name: "conv12"
  type: "Convolution"
  bottom: "conv12/dw"
  top: "conv12"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 1024
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv12/bn"
  type: "BatchNorm"
  bottom: "conv12"
  top: "conv12"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv12/scale"
  type: "Scale"
  bottom: "conv12"
  top: "conv12"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv12/relu"
  type: "ReLU"
  bottom: "conv12"
  top: "conv12"
}

layer {
  name: "conv13/dw"
  type: "Convolution"
  bottom: "conv12"
  top: "conv13/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 1024
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 1024
    #engine: CAFFE
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv13/dw/bn"
  type: "BatchNorm"
  bottom: "conv13/dw"
  top: "conv13/dw"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv13/dw/scale"
  type: "Scale"
  bottom: "conv13/dw"
  top: "conv13/dw"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv13/dw/relu"
  type: "ReLU"
  bottom: "conv13/dw"
  top: "conv13/dw"
}
layer {
  name: "conv13"
  type: "Convolution"
  bottom: "conv13/dw"
  top: "conv13"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 1024
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv13/bn"
  type: "BatchNorm"
  bottom: "conv13"
  top: "conv13"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv13/scale"
  type: "Scale"
  bottom: "conv13"
  top: "conv13"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv13/relu"
  type: "ReLU"
  bottom: "conv13"
  top: "conv13"
}

layer {
  name: "conv14_1"
  type: "Convolution"
  bottom: "conv13"
  top: "conv14_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv14_1/bn"
  type: "BatchNorm"
  bottom: "conv14_1"
  top: "conv14_1"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv14_1/scale"
  type: "Scale"
  bottom: "conv14_1"
  top: "conv14_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv14_1/relu"
  type: "ReLU"
  bottom: "conv14_1"
  top: "conv14_1"
}
layer {
  name: "conv14_2"
  type: "Convolution"
  bottom: "conv14_1"
  top: "conv14_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv14_2/bn"
  type: "BatchNorm"
  bottom: "conv14_2"
  top: "conv14_2"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv14_2/scale"
  type: "Scale"
  bottom: "conv14_2"
  top: "conv14_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv14_2/relu"
  type: "ReLU"
  bottom: "conv14_2"
  top: "conv14_2"
}


layer {
  name: "conv15_1"
  type: "Convolution"
  bottom: "conv14_2"
  top: "conv15_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv15_1/bn"
  type: "BatchNorm"
  bottom: "conv15_1"
  top: "conv15_1"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv15_1/scale"
  type: "Scale"
  bottom: "conv15_1"
  top: "conv15_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv15_1/relu"
  type: "ReLU"
  bottom: "conv15_1"
  top: "conv15_1"
}
layer {
  name: "conv15_2"
  type: "Convolution"
  bottom: "conv15_1"
  top: "conv15_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv15_2/bn"
  type: "BatchNorm"
  bottom: "conv15_2"
  top: "conv15_2"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv15_2/scale"
  type: "Scale"
  bottom: "conv15_2"
  top: "conv15_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv15_2/relu"
  type: "ReLU"
  bottom: "conv15_2"
  top: "conv15_2"
}


layer {
  name: "conv16_1"
  type: "Convolution"
  bottom: "conv15_2"
  top: "conv16_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv16_1/bn"
  type: "BatchNorm"
  bottom: "conv16_1"
  top: "conv16_1"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv16_1/scale"
  type: "Scale"
  bottom: "conv16_1"
  top: "conv16_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv16_1/relu"
  type: "ReLU"
  bottom: "conv16_1"
  top: "conv16_1"
}
layer {
  name: "conv16_2"
  type: "Convolution"
  bottom: "conv16_1"
  top: "conv16_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv16_2/bn"
  type: "BatchNorm"
  bottom: "conv16_2"
  top: "conv16_2"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv16_2/scale"
  type: "Scale"
  bottom: "conv16_2"
  top: "conv16_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv16_2/relu"
  type: "ReLU"
  bottom: "conv16_2"
  top: "conv16_2"
}


layer {
  name: "conv17_1"
  type: "Convolution"
  bottom: "conv16_2"
  top: "conv17_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 64
    bias_term: false
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv17_1/bn"
  type: "BatchNorm"
  bottom: "conv17_1"
  top: "conv17_1"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv17_1/scale"
  type: "Scale"
  bottom: "conv17_1"
  top: "conv17_1"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv17_1/relu"
  type: "ReLU"
  bottom: "conv17_1"
  top: "conv17_1"
}
layer {
  name: "conv17_2"
  type: "Convolution"
  bottom: "conv17_1"
  top: "conv17_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
  }
}
layer {
  name: "conv17_2/bn"
  type: "BatchNorm"
  bottom: "conv17_2"
  top: "conv17_2"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
}
layer {
  name: "conv17_2/scale"
  type: "Scale"
  bottom: "conv17_2"
  top: "conv17_2"
  param {
    lr_mult: 0.1
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  scale_param {
    filler {
      value: 1
    }
    bias_term: true
    bias_filler {
      value: 0
    }
  }
}
layer {
  name: "conv17_2/relu"
  type: "ReLU"
  bottom: "conv17_2"
  top: "conv17_2"
}

layer {
  name: "conv11_mbox_loc"            // ##可以看出,conv13是骨干网络的最后一层,作者仿照VGG-SSD的结构,在Mobilenet的conv13后面添加了8个卷积层,然后总共抽取6层用作检测                                           。提取默认框的6层为conv11, conv13, conv14_2, conv15_2, conv16_2, conv17_2,该6层feature map 每个cell产生的默认框个数分别为3,                                           6,6,6,6,6。也就是说在那6层的后边接的用于坐标回归的3*3的卷积核(层名为conv11_mbox_loc……)的输出个数(num output)分别为                                            12,24,24,24,24,24,24。

  type: "Convolution"
  bottom: "conv11"
  top: "conv11_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv11_mbox_loc_perm"
  type: "Permute"
  bottom: "conv11_mbox_loc"
  top: "conv11_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv11_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv11_mbox_loc_perm"
  top: "conv11_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv11_mbox_conf"       // ##那6层后边接的用于类别得分的3*3卷积核(层名为conv11_mbox_conf……)的输出个数为3*21(类别为21类,3个默认框)                                                    =63,126,126,126,126,126.
  type: "Convolution"
  bottom: "conv11"
  top: "conv11_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 63
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv11_mbox_conf_perm"       
  type: "Permute"
  bottom: "conv11_mbox_conf"
  top: "conv11_mbox_conf_perm"            //##需要设置的参数为数组order,即置换后的索引轴顺序,可以指定输入blob中所有索引轴(维度)的顺序,例如输入blob为num(0)                                            ×channel(1)×height(2)×width(3),如果想要置换前两轴,则可设置1,0,2,3
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv11_mbox_conf_flat"
  type: "Flatten"                           //##Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。
  bottom: "conv11_mbox_conf_perm"
  top: "conv11_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv11_mbox_priorbox"
  type: "PriorBox"                        //##这一层完成的是给定一系列feature map后如何在上面生成prior box.只有conv11的anchor个数是3,其他5层都是6,原因是conv11只有                                               min_size,没有max_size,并且aspect_ratio只有1个,其他5层都是两个,也就是说conv11是1+1*2=3,其他5层是1+1+2*2=6
  bottom: "conv11"
  bottom: "data"
  top: "conv11_mbox_priorbox"
  prior_box_param {
    min_size: 60.0
    aspect_ratio: 2.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}

layer {
  name: "conv13_mbox_loc"
  type: "Convolution"
  bottom: "conv13"
  top: "conv13_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv13_mbox_loc_perm"
  type: "Permute"
  bottom: "conv13_mbox_loc"
  top: "conv13_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv13_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv13_mbox_loc_perm"
  top: "conv13_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv13_mbox_conf"
  type: "Convolution"
  bottom: "conv13"
  top: "conv13_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 126
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv13_mbox_conf_perm"
  type: "Permute"
  bottom: "conv13_mbox_conf"
  top: "conv13_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv13_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv13_mbox_conf_perm"
  top: "conv13_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv13_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv13"
  bottom: "data"
  top: "conv13_mbox_priorbox"
  prior_box_param {
    min_size: 105.0
    max_size: 150.0
    aspect_ratio: 2.0
    aspect_ratio: 3.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}


layer {
  name: "conv14_2_mbox_loc"
  type: "Convolution"
  bottom: "conv14_2"
  top: "conv14_2_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv14_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv14_2_mbox_loc"
  top: "conv14_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv14_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv14_2_mbox_loc_perm"
  top: "conv14_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv14_2_mbox_conf"
  type: "Convolution"
  bottom: "conv14_2"
  top: "conv14_2_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 126
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv14_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv14_2_mbox_conf"
  top: "conv14_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv14_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv14_2_mbox_conf_perm"
  top: "conv14_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv14_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv14_2"
  bottom: "data"
  top: "conv14_2_mbox_priorbox"
  prior_box_param {
    min_size: 150.0
    max_size: 195.0
    aspect_ratio: 2.0
    aspect_ratio: 3.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}



layer {
  name: "conv15_2_mbox_loc"
  type: "Convolution"
  bottom: "conv15_2"
  top: "conv15_2_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv15_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv15_2_mbox_loc"
  top: "conv15_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv15_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv15_2_mbox_loc_perm"
  top: "conv15_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv15_2_mbox_conf"
  type: "Convolution"
  bottom: "conv15_2"
  top: "conv15_2_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 126
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv15_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv15_2_mbox_conf"
  top: "conv15_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv15_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv15_2_mbox_conf_perm"
  top: "conv15_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv15_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv15_2"
  bottom: "data"
  top: "conv15_2_mbox_priorbox"
  prior_box_param {
    min_size: 195.0
    max_size: 240.0
    aspect_ratio: 2.0
    aspect_ratio: 3.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}


layer {
  name: "conv16_2_mbox_loc"
  type: "Convolution"
  bottom: "conv16_2"
  top: "conv16_2_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv16_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv16_2_mbox_loc"
  top: "conv16_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv16_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv16_2_mbox_loc_perm"
  top: "conv16_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv16_2_mbox_conf"
  type: "Convolution"
  bottom: "conv16_2"
  top: "conv16_2_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 126
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv16_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv16_2_mbox_conf"
  top: "conv16_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv16_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv16_2_mbox_conf_perm"
  top: "conv16_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv16_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv16_2"
  bottom: "data"
  top: "conv16_2_mbox_priorbox"
  prior_box_param {
    min_size: 240.0
    max_size: 285.0
    aspect_ratio: 2.0
    aspect_ratio: 3.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}


layer {
  name: "conv17_2_mbox_loc"
  type: "Convolution"
  bottom: "conv17_2"
  top: "conv17_2_mbox_loc"
  param {
    lr_mult: 0.1
    decay_mult: 0.1
  }
  param {
    lr_mult: 0.2
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 24
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv17_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv17_2_mbox_loc"
  top: "conv17_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv17_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv17_2_mbox_loc_perm"
  top: "conv17_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv17_2_mbox_conf"
  type: "Convolution"
  bottom: "conv17_2"
  top: "conv17_2_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 126
    kernel_size: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv17_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv17_2_mbox_conf"
  top: "conv17_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv17_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv17_2_mbox_conf_perm"
  top: "conv17_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv17_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv17_2"
  bottom: "data"
  top: "conv17_2_mbox_priorbox"
  prior_box_param {
    min_size: 285.0
    max_size: 300.0
    aspect_ratio: 2.0
    aspect_ratio: 3.0
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    offset: 0.5
  }
}


layer {
  name: "mbox_loc"
  type: "Concat"                      //##Concat层(全连接层)的功能:Concat层是一个实用程序层,它将多个输入blob连接到一个输出blob(按照给定的axis,注意除了规定的axis以                                         外,被concat的输入bolb的其他维度的size必须一致)。
  bottom: "conv11_mbox_loc_flat"
  bottom: "conv13_mbox_loc_flat"
  bottom: "conv14_2_mbox_loc_flat"
  bottom: "conv15_2_mbox_loc_flat"
  bottom: "conv16_2_mbox_loc_flat"
  bottom: "conv17_2_mbox_loc_flat"
  top: "mbox_loc"
  concat_param {
    axis: 1                         
  }
}
layer {
  name: "mbox_conf"
  type: "Concat"
  bottom: "conv11_mbox_conf_flat"
  bottom: "conv13_mbox_conf_flat"
  bottom: "conv14_2_mbox_conf_flat"
  bottom: "conv15_2_mbox_conf_flat"
  bottom: "conv16_2_mbox_conf_flat"
  bottom: "conv17_2_mbox_conf_flat"
  top: "mbox_conf"
  concat_param {
    axis: 1
  }
}
layer {
  name: "mbox_priorbox"
  type: "Concat"
  bottom: "conv11_mbox_priorbox"
  bottom: "conv13_mbox_priorbox"
  bottom: "conv14_2_mbox_priorbox"
  bottom: "conv15_2_mbox_priorbox"
  bottom: "conv16_2_mbox_priorbox"
  bottom: "conv17_2_mbox_priorbox"
  top: "mbox_priorbox"
  concat_param {
    axis: 2
  }
}
layer {
  name: "mbox_conf_reshape"
  type: "Reshape"                          //##在不改变数据的情况下,改变输入的维度。
  bottom: "mbox_conf"
  top: "mbox_conf_reshape"
  reshape_param {
    shape {
      dim: 0
      dim: -1
      dim: 21
    }
  }
}
layer {
  name: "mbox_conf_softmax"
  type: "Softmax"                   //##softmax是一个分类器,计算的是类别的概率
  bottom: "mbox_conf_reshape"
  top: "mbox_conf_softmax"
  softmax_param {
    axis: 2
  }
}
layer {
  name: "mbox_conf_flatten"
  type: "Flatten"
  bottom: "mbox_conf_softmax"
  top: "mbox_conf_flatten"
  flatten_param {
    axis: 1                         
  }
}
layer {
  name: "detection_out"
  type: "DetectionOutput"       //##detection out layer是ssd网络最后一层,用于整合预选框、预选框偏移以及得分三项结果,最终输出满足条件的目标检测框、目标的label和得分。
  bottom: "mbox_loc"
  bottom: "mbox_conf_flatten"
  bottom: "mbox_priorbox"
  top: "detection_out"
  include {
    phase: TEST
  }
  detection_output_param {
    num_classes: 21
    share_location: true
    background_label_id: 0
    nms_param {
      nms_threshold: 0.45
      top_k: 100
    }
    code_type: CENTER_SIZE
    keep_top_k: 100
    confidence_threshold: 0.25
  }
}



你可能感兴趣的:(深度学习)