name: "MobileNet-SSD" //##表示名称,可随意取
input: "data" // ##定义input名为data
input_shape {
dim: 1 //##batch_size=1
dim: 3 //##num_channels=3
dim: 300 // ##input_height=300
dim: 300 // ##input_width=300
}
layer {
name: "conv0" // ##表示该层的名称,可随意取
type: "Convolution" //##该表示层特性,如relu,type=ReLU,pooling,type=Poolin,这里为卷积层
bottom: "data" //##每一层用bottom来输入数据,这里输入为input data
top: "conv0" //##每一层用top来输出数据 output data
param { // ##定义该层的参数信息
lr_mult: 0.1 // ##学习率,但是最终的学习率需要乘以solver.prototxt配置文件中的base_lr。如果有两个 lr_mult, 则第一个表示 weight 的学习率,第二个表示 bias 的 学习率 。一般 bias 的学习率是 weight 学习率的2倍’
decay_mult: 0.1 //##权值衰减,为了避免模型的over-fitting,需要对cost function加入规范项
}
convolution_param {
num_output: 32 //##卷积核(filter)的个数
bias_term: false //##是否开启偏置项,默认为true, 开启
pad: 1 // ##扩充边缘,默认为0,不扩充。扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充 了4个像素,这样卷积运算之后的特征图就不会变小。 也可以通过pad_h和pad_w来分别设定。
kernel_size: 3 // ##卷积核的大小。如果卷积核的长和宽不等,需要用 kernel_h 和 kernel_w 分别设定
stride: 2 //##卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
weight_filler { //##权值初始化。 默认为“constant”,值全为0. 很多时候我们用”xavier”算法来进行初始化,也可以设置为”gaussian”
type: "msra"
}
}
}
layer {
name: "conv0/bn" //##卷积层conv0BN
type: "BatchNorm" //##batch归一化,BatchNorm主要做了两部分:1是对输入进行归一化,对应BatchNorm 层;2是归一化后进行平移缩放,对应Scale 层。在Caffe 中,一般一个 BatchNorm 层后接 一个 Scale 层
bottom: "conv0" // ##输入的是卷积层conv0
top: "conv0" //##输出也是卷积层conv0
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true //##在实现的时候要注意的是由于Scale需要实现平移功能,所以要把bias_term项设为true
bias_filler { // ##偏置项的初始化。一般设置为”constant”, 值全为0。省略了type:“constant”。应该为bias_filler {type: "constant" value: 0}
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "Convolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32 //##group参数,其意思是将对应的输入通道与输出通道数进行分组。卷积分组可以减少网络的参数,至于是否还有其他的作用就不清楚了。比如输入数据大小为
90x100x100x32 90是数据批大小 100x100是图像数据shape,32是通道数,要经过一个3x3x48的卷积,group默认是1就是全连接的卷积层,如果group是2,那 么对应要将输入的32个通道分成2个16的通道,将输出的48个通道分成2个24的通道。对输出的2个24的通道,第一个24通道与输入的第一个16通道进行全卷积,第 二个24通道与输入的第二个16通道进行全卷积。极端情况下,输入输出通道数相同,比如为32,group大小也为32,那么每个输出卷积核,只与输入的对应的通道 进行卷积。
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "Convolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "Convolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "Convolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "Convolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "Convolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "Convolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "Convolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "Convolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "Convolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "Convolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "Convolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "Convolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
#engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv14_1"
type: "Convolution"
bottom: "conv13"
top: "conv14_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_1/bn"
type: "BatchNorm"
bottom: "conv14_1"
top: "conv14_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14_1/scale"
type: "Scale"
bottom: "conv14_1"
top: "conv14_1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_1/relu"
type: "ReLU"
bottom: "conv14_1"
top: "conv14_1"
}
layer {
name: "conv14_2"
type: "Convolution"
bottom: "conv14_1"
top: "conv14_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_2/bn"
type: "BatchNorm"
bottom: "conv14_2"
top: "conv14_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14_2/scale"
type: "Scale"
bottom: "conv14_2"
top: "conv14_2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_2/relu"
type: "ReLU"
bottom: "conv14_2"
top: "conv14_2"
}
layer {
name: "conv15_1"
type: "Convolution"
bottom: "conv14_2"
top: "conv15_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_1/bn"
type: "BatchNorm"
bottom: "conv15_1"
top: "conv15_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv15_1/scale"
type: "Scale"
bottom: "conv15_1"
top: "conv15_1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_1/relu"
type: "ReLU"
bottom: "conv15_1"
top: "conv15_1"
}
layer {
name: "conv15_2"
type: "Convolution"
bottom: "conv15_1"
top: "conv15_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_2/bn"
type: "BatchNorm"
bottom: "conv15_2"
top: "conv15_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv15_2/scale"
type: "Scale"
bottom: "conv15_2"
top: "conv15_2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_2/relu"
type: "ReLU"
bottom: "conv15_2"
top: "conv15_2"
}
layer {
name: "conv16_1"
type: "Convolution"
bottom: "conv15_2"
top: "conv16_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_1/bn"
type: "BatchNorm"
bottom: "conv16_1"
top: "conv16_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16_1/scale"
type: "Scale"
bottom: "conv16_1"
top: "conv16_1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_1/relu"
type: "ReLU"
bottom: "conv16_1"
top: "conv16_1"
}
layer {
name: "conv16_2"
type: "Convolution"
bottom: "conv16_1"
top: "conv16_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_2/bn"
type: "BatchNorm"
bottom: "conv16_2"
top: "conv16_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16_2/scale"
type: "Scale"
bottom: "conv16_2"
top: "conv16_2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_2/relu"
type: "ReLU"
bottom: "conv16_2"
top: "conv16_2"
}
layer {
name: "conv17_1"
type: "Convolution"
bottom: "conv16_2"
top: "conv17_1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_1/bn"
type: "BatchNorm"
bottom: "conv17_1"
top: "conv17_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17_1/scale"
type: "Scale"
bottom: "conv17_1"
top: "conv17_1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_1/relu"
type: "ReLU"
bottom: "conv17_1"
top: "conv17_1"
}
layer {
name: "conv17_2"
type: "Convolution"
bottom: "conv17_1"
top: "conv17_2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_2/bn"
type: "BatchNorm"
bottom: "conv17_2"
top: "conv17_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17_2/scale"
type: "Scale"
bottom: "conv17_2"
top: "conv17_2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_2/relu"
type: "ReLU"
bottom: "conv17_2"
top: "conv17_2"
}
layer {
name: "conv11_mbox_loc" // ##可以看出,conv13是骨干网络的最后一层,作者仿照VGG-SSD的结构,在Mobilenet的conv13后面添加了8个卷积层,然后总共抽取6层用作检测 。提取默认框的6层为conv11, conv13, conv14_2, conv15_2, conv16_2, conv17_2,该6层feature map 每个cell产生的默认框个数分别为3, 6,6,6,6,6。也就是说在那6层的后边接的用于坐标回归的3*3的卷积核(层名为conv11_mbox_loc……)的输出个数(num output)分别为 12,24,24,24,24,24,24。
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_loc_perm"
type: "Permute"
bottom: "conv11_mbox_loc"
top: "conv11_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_loc_flat"
type: "Flatten"
bottom: "conv11_mbox_loc_perm"
top: "conv11_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_conf" // ##那6层后边接的用于类别得分的3*3卷积核(层名为conv11_mbox_conf……)的输出个数为3*21(类别为21类,3个默认框) =63,126,126,126,126,126.
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 63
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_conf_perm"
type: "Permute"
bottom: "conv11_mbox_conf"
top: "conv11_mbox_conf_perm" //##需要设置的参数为数组order,即置换后的索引轴顺序,可以指定输入blob中所有索引轴(维度)的顺序,例如输入blob为num(0) ×channel(1)×height(2)×width(3),如果想要置换前两轴,则可设置1,0,2,3
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_conf_flat"
type: "Flatten" //##Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。
bottom: "conv11_mbox_conf_perm"
top: "conv11_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_priorbox"
type: "PriorBox" //##这一层完成的是给定一系列feature map后如何在上面生成prior box.只有conv11的anchor个数是3,其他5层都是6,原因是conv11只有 min_size,没有max_size,并且aspect_ratio只有1个,其他5层都是两个,也就是说conv11是1+1*2=3,其他5层是1+1+2*2=6
bottom: "conv11"
bottom: "data"
top: "conv11_mbox_priorbox"
prior_box_param {
min_size: 60.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv13_mbox_loc"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_loc_perm"
type: "Permute"
bottom: "conv13_mbox_loc"
top: "conv13_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_loc_flat"
type: "Flatten"
bottom: "conv13_mbox_loc_perm"
top: "conv13_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_conf"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_conf_perm"
type: "Permute"
bottom: "conv13_mbox_conf"
top: "conv13_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_conf_flat"
type: "Flatten"
bottom: "conv13_mbox_conf_perm"
top: "conv13_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_priorbox"
type: "PriorBox"
bottom: "conv13"
bottom: "data"
top: "conv13_mbox_priorbox"
prior_box_param {
min_size: 105.0
max_size: 150.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv14_2_mbox_loc"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_loc_perm"
type: "Permute"
bottom: "conv14_2_mbox_loc"
top: "conv14_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv14_2_mbox_loc_perm"
top: "conv14_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_conf"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_conf_perm"
type: "Permute"
bottom: "conv14_2_mbox_conf"
top: "conv14_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv14_2_mbox_conf_perm"
top: "conv14_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv14_2"
bottom: "data"
top: "conv14_2_mbox_priorbox"
prior_box_param {
min_size: 150.0
max_size: 195.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv15_2_mbox_loc"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_loc_perm"
type: "Permute"
bottom: "conv15_2_mbox_loc"
top: "conv15_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv15_2_mbox_loc_perm"
top: "conv15_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_conf"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_conf_perm"
type: "Permute"
bottom: "conv15_2_mbox_conf"
top: "conv15_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv15_2_mbox_conf_perm"
top: "conv15_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv15_2"
bottom: "data"
top: "conv15_2_mbox_priorbox"
prior_box_param {
min_size: 195.0
max_size: 240.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv16_2_mbox_loc"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_loc_perm"
type: "Permute"
bottom: "conv16_2_mbox_loc"
top: "conv16_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv16_2_mbox_loc_perm"
top: "conv16_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_conf"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_conf_perm"
type: "Permute"
bottom: "conv16_2_mbox_conf"
top: "conv16_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv16_2_mbox_conf_perm"
top: "conv16_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv16_2"
bottom: "data"
top: "conv16_2_mbox_priorbox"
prior_box_param {
min_size: 240.0
max_size: 285.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv17_2_mbox_loc"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_loc"
param {
lr_mult: 0.1
decay_mult: 0.1
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_loc_perm"
type: "Permute"
bottom: "conv17_2_mbox_loc"
top: "conv17_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv17_2_mbox_loc_perm"
top: "conv17_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_conf"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 126
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_conf_perm"
type: "Permute"
bottom: "conv17_2_mbox_conf"
top: "conv17_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv17_2_mbox_conf_perm"
top: "conv17_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv17_2"
bottom: "data"
top: "conv17_2_mbox_priorbox"
prior_box_param {
min_size: 285.0
max_size: 300.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "mbox_loc"
type: "Concat" //##Concat层(全连接层)的功能:Concat层是一个实用程序层,它将多个输入blob连接到一个输出blob(按照给定的axis,注意除了规定的axis以 外,被concat的输入bolb的其他维度的size必须一致)。
bottom: "conv11_mbox_loc_flat"
bottom: "conv13_mbox_loc_flat"
bottom: "conv14_2_mbox_loc_flat"
bottom: "conv15_2_mbox_loc_flat"
bottom: "conv16_2_mbox_loc_flat"
bottom: "conv17_2_mbox_loc_flat"
top: "mbox_loc"
concat_param {
axis: 1
}
}
layer {
name: "mbox_conf"
type: "Concat"
bottom: "conv11_mbox_conf_flat"
bottom: "conv13_mbox_conf_flat"
bottom: "conv14_2_mbox_conf_flat"
bottom: "conv15_2_mbox_conf_flat"
bottom: "conv16_2_mbox_conf_flat"
bottom: "conv17_2_mbox_conf_flat"
top: "mbox_conf"
concat_param {
axis: 1
}
}
layer {
name: "mbox_priorbox"
type: "Concat"
bottom: "conv11_mbox_priorbox"
bottom: "conv13_mbox_priorbox"
bottom: "conv14_2_mbox_priorbox"
bottom: "conv15_2_mbox_priorbox"
bottom: "conv16_2_mbox_priorbox"
bottom: "conv17_2_mbox_priorbox"
top: "mbox_priorbox"
concat_param {
axis: 2
}
}
layer {
name: "mbox_conf_reshape"
type: "Reshape" //##在不改变数据的情况下,改变输入的维度。
bottom: "mbox_conf"
top: "mbox_conf_reshape"
reshape_param {
shape {
dim: 0
dim: -1
dim: 21
}
}
}
layer {
name: "mbox_conf_softmax"
type: "Softmax" //##softmax是一个分类器,计算的是类别的概率
bottom: "mbox_conf_reshape"
top: "mbox_conf_softmax"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten"
type: "Flatten"
bottom: "mbox_conf_softmax"
top: "mbox_conf_flatten"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput" //##detection out layer是ssd网络最后一层,用于整合预选框、预选框偏移以及得分三项结果,最终输出满足条件的目标检测框、目标的label和得分。
bottom: "mbox_loc"
bottom: "mbox_conf_flatten"
bottom: "mbox_priorbox"
top: "detection_out"
include {
phase: TEST
}
detection_output_param {
num_classes: 21
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 100
}
code_type: CENTER_SIZE
keep_top_k: 100
confidence_threshold: 0.25
}
}