- 排列组合数的一些公式
wuming先生
绪论:加法原理、乘法原理#分类计数原理:做一件事,有nn类办法,在第11类办法中有m1m1种不同的方法,在第22类办法中有m2m2种不同的方法,…,在第nn类办法中有mnmn种不同的方法,那么完成这件事共有N=m1+m2+…+mnN=m1+m2+…+mn种不同的方法。分步计数原理:完成一件事,需要分成nn个步骤,做第11步有m1m1种不同的方法,做第22步有m2m2种不同的方法,…,做第nn步有m
- NCNN GPU初始化加速——cache实现
陈立里
ncnn
概要NCNN的CPU初始化速度很快,但是当使用GPU进行推理时,初始化往往要花费几秒甚至更长时间。其他框架例如MNN有载入cache的方式来进行加速,NCNN目前没有相关接口来实现加速,那么NCNN是否也可以加载cache来实现加速呢?整体流程通过测速以及查看NCNN的源码可以发现,在gpu.cpp源文件下的VulkanDevice::create_pipeline函数内的vkCreateComp
- 手写数字识别从训练到部署全流程详解——模型在Android端的部署
彧侠
综述:目前深度学习模型在移动端的使用已越来越广泛,而移动端设备的性能表现自然无法与PC端相提并论,目前市面上基本所有的训练框架训练出来的模型都无法直接在移动端上使用和推理,尽管部分框架同时做了移动端部署功能(如Tensorflow-lite、pytorch-mobile等),但是在性能表现上对比专业的部署框架(如ncnn、mnn等)没有任何优势,基于之前对部署框架的使用经验,下面我就以手写数字识别
- 【深度学习】MNN ImageProcess处理图像顺序,逻辑,均值,方差
XD742971636
深度学习机器学习深度学习mnnImageProcess
文章目录介绍Opencvnumpy等效的MNN处理介绍MNNImageProcess处理图像是先reisze还是后resize,均值方差怎么处理,是什么通道顺序?这篇文章告诉你答案。Opencvnumpy这段代码是一个图像预处理函数,用于对输入的图像进行一系列处理,以便将其用于某些机器学习模型的输入。cv2.imdecode(np.fromfile(imgpath,dtype=np.uint8),
- VS CMAKE链接MNN静态库,使用pybind11生成python接口
qizhen816
pybind11的使用教程已经有很多了,参考https://zhuanlan.zhihu.com/p/93299698,建议使用vcpkg安装pybind11pybind11:x64-windows-static等等库我的接口形式为voidface_handler(py::module&m){py::class_(m,"RFInfer").def(py::init()).def("__call__
- MNN编译android版本脚本
yuhongjiu
#!/bin/bash./schema/generate.shexportANDROID_NDK="/home/yw/android_ndk/android-ndk-r18b"rm-rfbuild_androidmkdirbuild_androidcdbuild_androidfunctionbuild_android{mkdir$PREFIXcd$PREFIXcmake../../../-DCM
- 鸿蒙使用第三方SO库
neo_尼欧
HarmonyOSOpenharmonyOpenHarmonyharmonyosHAP
一、示例:使用第三方SO库以导入OpenCV和MNN的SO库为例1、将MNN和Opencv的so文件(包括.407文件),放入模块下libs目录对应的版本(arm64-v8a和armeabi-v7a)entry/libs/arm64-v8a/xxx.so2、配置模块目录下的build-profile.json5的buildOption字段,增加abiFilters字段:"buildOption":
- 大模型内容分享(二十八):mnn-llm: 大语言模型端侧CPU推理优化
之乎者也·
大模型(FoundationModel)内容分享AI(人工智能)内容分享mnn语言模型人工智能
在大语言模型(LLM)端侧部署上,基于MNN实现的mnn-llm项目已经展现出业界领先的性能,特别是在ARM架构的CPU上。目前利用mnn-llm的推理能力,qwen-1.8b在mnn-llm的驱动下能够在移动端达到端侧实时会话的能力,能够在较低内存(<2G)的情况下,做到快速响应。目录背景模型导出模型部署性能优化性能测试总结与展望项目代码团队介绍背景在大型语言模型(LLM)领域的迅猛发展背景下,
- [MNN]vs2019编译MNN x86
FL1623863129
深度学习mnnc++人工智能
打开开始编译cd/path/to/MNNmkdirbuild&&cdbuildcmake-G"NMakeMakefiles"-DCMAKE_BUILD_TYPE=Release..nmake
- 香橙派--编译MNN报错,关于汇编的嵌套展开
lindsayshuo
mnn汇编人工智能
先看报错:/home/orangepi/MNN-master/source/backend/cpu/arm/arm64/bf16/ARMV86_MNNPackedMatMulRemain_BF16.S:158:Fatalerror:macrosnestedtoodeeply再看代码:PostTreatLH8:FMAXv9,v15,v16,v17,v18FMAXv9,v19,v20,v21,v22F
- mnn-llm: 大语言模型端侧CPU推理优化
阿里巴巴淘系技术团队官网博客
mnn语言模型人工智能深度学习机器学习
在大语言模型(LLM)端侧部署上,基于MNN实现的mnn-llm项目已经展现出业界领先的性能,特别是在ARM架构的CPU上。目前利用mnn-llm的推理能力,qwen-1.8b在mnn-llm的驱动下能够在移动端达到端侧实时会话的能力,能够在较低内存(<2G)的情况下,做到快速响应。背景在大型语言模型(LLM)领域的迅猛发展背景下,开源社区已经孵化了众多优异的LLM模型。这些模型在自然语言处理的各
- 探索模块化神经网络在现代人工智能中的功效和应用
无水先生
NLP高级和ChatGPT人工智能人工智能神经网络深度学习
一、介绍在快速发展的人工智能领域,模块化神经网络(MNN)已成为一项关键创新。与遵循整体方法的传统神经网络架构不同,MNN采用分散式结构。本文深入探讨了MNN的基础知识、它们的优势、应用以及它们带来的挑战。@evertongomede在人工智能领域,模块化神经网络证明了协作智能的力量,体现了整体大于部分之和的原则。二、了解模块化神经网络模块化神经网络代表了神经网络设计的范式转变。核心思想是将复杂问
- 移动端模型部署框架
落花逐流水
pytorch实践人工智能pytorch
移动端模型部署框架1.MNN整体特点轻量性通用性高性能易用性架构设计主体工具致谢移动端模型部署框架1.MNNhttps://www.yuque.com/mnn/cn/aboutMNN是全平台轻量级高性能深度学习引擎,广泛支持了阿里巴巴在计算机视觉、语音识别技术、自然语言处理等领域的70多个AI应用场景,包含淘宝搜索、拍立淘、淘宝直播、AR导购等,日调用量达十亿量级。
- Microsoft C++ 异常: std::length_error,位于内存位置 0x000000AF9B7AF810 处
AI视觉网奇
c++入门宝典c++
mnn运行报错:0x00007FFCFD1C4ED9处(位于mnn_yolo.exe中)有未经处理的异常:MicrosoftC++异常:std::length_error,位于内存位置0x000000AF9B7AF810处。原因:release库,选择运行库模式mtd,这时需要引用debug库,但是运行会报错。解决方法:release,运行库需要设置成mt或者mddebug,运行库需要设置为MTd
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- conan入门(二十九):对阿里mnn进行Conan封装塈conans.CMake和conan.tools.cmake.CMake的区别
10km
conandeeplearningmnnconanconanfile.pyaarch64cmake
去年写过一篇博客《conan入门(十九):封装第三方开源库cpp_redis示例》,当时通过自己写conanfile.py,实现了对第三方库cpp_redis的conan封装。当时使用的conan1.45.0时过一年多,conan版本也经过了很多次升级,最新的版本是2.x,不过为了保持兼容现在我使用的版本是1.60.0conans.CMakeVSconan.tools.cmake.CMake当时使
- Int8量化算子在移动端CPU的性能优化
阿里巴巴淘系技术团队官网博客
性能优化
本文介绍了DepthwiseConvolution的Int8算子在移动端CPU上的性能优化方案。ARM架构的升级和相应指令集的更新不断提高移动端各算子的性能上限,结合数据重排和Sdot指令能给DepthwiseConv量化算子的性能带来较大提升。背景MNN对ConvolutionDepthwiseInt8量化算子在ARMV8(64位)和ARMV8.2上的性能做了较大的优化,主要优化方法包括改变数据
- pth转onnx转mnn bug总结
三寸光阴___
MNN网络结构
pytorch版yolov3转onnx样例importtorchimporttorchvisionimportnumpyasnpfromonnxruntime.datasetsimportget_exampleimportonnxruntimefromonnximportshape_inferenceimportonnximportosfrommodelsimport*img_size=416cf
- 深度学习可视化工具:Netron
泠山
深度学习深度学习人工智能
Netron是一个用于神经网络、深度学习和机器学习模型的可视化工具。Netron支持ONNX、TensorFlowLite、Caffe、Keras、Darknet、PaddlePaddle、ncnn、MNN、CoreML、RKNN、MXNet、MindSporeLite、TNN、Barracuda、Tengine、CNTK、TensorFlow.js、Caffe2和UFF。它还实验性支持PyTor
- nndeploy:一款最新上线的支持多平台、简单易用、高性能的机器学习部署框架
nudt_qxx
c++mnnpaddlepytorch
项目地址:https://github.com/Alwaysssssss/nndeploy介绍nndeploy是一款最新上线的支持多平台、高性能、简单易用的机器学习部署框架。做到一个框架就可完成多端(云、边、端)模型的高性能部署。作为一个多平台模型部署工具,我们的框架最大的宗旨就是高性能以及使用简单贴心,目前nndeploy已完成TensorRT、OpenVINO、ONNXRuntime、MNN、
- 管理类联考——数学——汇总篇——知识点突破——数据分析——计数原理——加法原理&减法原理
fo安方
管理类专业学位联考MBAEME—share考研学习EMEMBAEMBA
角度——⛲️一、考点讲解分类计数原理(加法原理)(1)定义如果完成一件事有n类办法,只要选择其中一类办法中的任何一种方法,就可以完成这件事。若第一类办法中有m1m_1m1种不同的方法,第二类办法中有m2m_2m2种不同的方法…第n类办法中有mnm_nmn种不同的办法,那么完成这件事共用N=m1+m2+...+mnN=m_1+m_2+...+m_nN=m1+m2+...+mn种不同的方法。(2)理解
- 友善之臂NanoPC-T4 RK3399 配置 安装TensorFlow2 Pytorch
Yuuchuin
pythonLinuxlinux深度学习
文章目录1.简单介绍用户与密码2.改系统-安卓改Linux避坑3.换源-备份官方源-换国内源--清华源:--华为源(据说很快):-更新软件列表和升级4.文件传输-U盘传输文件-通过XFTP传输5.远程连接6.安装Mini-forge7.编译安装MNN-编译推理部分-编译训练部分-编译转换部分-姿态检测Demo8.安装MNNPythonAPI9.安装TensorFlow2.X10.安装TensorF
- 信科算法课课后思考题
lucia320
https://wenku.baidu.com/view/7c9de809581b6bd97f19ea72.html鹰蛋问题两颗蛋:考虑sqrt(n)的方式逐个扔蛋M颗蛋,N层楼:(1)动态规划,O(MNN)=O(N3)f(i,j)=min{max(f(i-1,w-1),f(i,j-w))|1log2(N),使用二分法最坏情况下的最小次数必然是log2(N+1);故只需考虑M<=log2(N)的情
- NBIS系列单细胞转录组数据分析实战(三):多样本数据整合
Davey1220
第三节:多样本数据整合在本节教程中,我们将探讨多个样本scRNA-seq数据集整合的不同方法。我们使用两种不同的方法来校正跨数据集的批处理效应。同时,我们还给出一种量化措施,以评估不同数据集整合的效果。Seurat使用单细胞数据综合集成中介绍的数据整合方法,而Scran和Scanpy使用相互最近邻方法(MNN)。以下是用于多样本数据集整合的常用方法:MarkdownLanguageLibraryR
- ChatGLM 项目集合
张志翔的博客
ChatGLM实战教程人工智能自然语言处理语言模型
chatGLM项目对ChatGLM进行加速或者重新实现的开源项目:SwissArmyTransformer:一个Transformer统一编程框架,ChatGLM-6B已经在SAT中进行实现并可以进行P-tuning微调。ChatGLM-MNN:一个基于MNN的ChatGLM-6BC++推理实现,支持根据显存大小自动分配计算任务给GPU和CPUJittorLLMs:最低3G显存或者没有显卡都可运行
- 修改MNN模型参数和节点的方法
星辰辰大海
深度学习神经网络计算机视觉mnn
最近有需求要更改MNN模型的结构,在网上找了好久,只找到两篇相关的,但是试了一下都没成功。之后我在钉钉群里面问了一下,得到此方法。编译的converter里面会有一个MNNDump2Json和MNNRevert2Buffer。我们可以使用:./MNNDump2JsonXXX.mnnXXX.json将mnn模型转为json文件。然后我们可以在json文件里面找到我们要修改的节点进行修改。最后使用:.
- onnx模型修改:将均值和方差放到模型中
CodingInCV
开发工具onnxpython深度学习
训练模型时,一般都会对原始数据进行归一化再送入网络,即减均值和除方差。在部署时,我们也要进行同样的操作。有些推理框架会提供对应的接口,我们只需要设置均值和方差即可,如MNN.也有一些框架不提供这样的功能,如Tensorrt,这时,我们就需要自己去逐像素进行这个操作,不仅繁琐,还可能比较耗时。还有一种方式是将这个操作放到模型中,一个方法是在我们的原始pytorch模型中增加一个固定参数的Batchn
- yolov8-mnn C++部署
zaibeijixing
深度学习C/C++YOLOmnn部署c++
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/zaibeijixing/article/details/131581809————————————————目录准备工作1、MNN编译2、yolov8-mnn文件夹构建3、编译4、执行附:yolov8_demo.cppCMakeLists.txt准备
- MNN学习笔记(八):使用MNN推理Mediapipe模型
MirrorYuChen
MNNmnnmediapipe-handmediapipe-facemediapipe-body
1.项目说明最近需要用到一些mediapipe中的模型功能,于是尝试对mediapipe中的一些模型进行转换,并使用MNN进行推理;主要模型包括:图像分类、人脸检测及人脸关键点mesh、手掌检测及手势关键点、人体检测及人体关键点、图像嵌入特征向量、图像特征点检测及匹配模型;2.一些效果:3.项目开源地址Mediapipe-MNN欢迎大家体验并点star~
- 【水文】基于 MNN 训练能力解方程
夕阳叹
mnn人工智能深度学习
【水文】基于MNN训练能力解方程简介许久没上,水篇文章,事由同学想由房贷月还款额推测年利率:月还款额=pow(年利率/12+1,期数)*(年利率/12)*贷款总额/(pow(年利率/12+1,期数)-1)这个方程直接求解感觉比较麻烦,考虑使用梯度下降法。深度学习框架基本都支持求导和优化,MNN也支持。所以安装pymnn,把方程用MNN的仿numpy接口实现一遍,然后写个loss训练就好了。基于MN
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul