【哈希表(散列表)】

一、基本概念

  • 若关键字为k,则其值存放在f(k)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表
  • 对不同的关键字可能得到同一散列地址,即k_1 \neq k_2,而f(k_1)=f(k_2),这种现象称碰撞(Collision)。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数hash(k)和处理碰撞的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象”作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表散列,所得的存储位置称散列地址
  • 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少碰撞。


【哈希表(散列表)】_第1张图片



二、哈希函数构造方法:

1、直接定址法

例如:有一个从1到100岁的人口数字统计表,其中,年龄作为关键字,哈希函数取关键字自身。

           但这种方法效率不高,时间复杂度是O(1),空间复杂度是O(n),n是关键字的个数

 

哈希表算法


2、数字分析法

有学生的生日数据如下:

年.月.日

75.10.03
75.11.23
76.03.02
76.07.12
75.04.21
76.02.15
...

经分析,第一位,第二位,第三位重复的可能性大,取这三位造成冲突的机会增加,所以尽量不取前三位,取后三位比较好。


三、平方取中法


     具体方法:先通过求关键字的平方值扩大相近数的差别,然后根据表长度取中间的几位数作为散列函数值。又因为一个乘积的中间几位数和乘数的每一位都相关,所以由此产生的散列地址较为均匀。
   【例】将一组关键字(0100,0110,1010,1001,0111)平方后得
    (0010000,0012100,1020100,1002001,0012321)
   若取表长为1000,则可取中间的三位数作为散列地址集:
    (100,121,201,020,123)。
相应的散列函数用C实现很简单:

int Hash(int key){ //假设key是4位整数
  key*=key; key/=100; //先求平方值,后去掉末尾的两位数
  return key%1000; //取中间三位数作为散列地址返回
 }

4、折叠法

将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址,这方法称为折叠法。

例如:每一种西文图书都有一个国际标准图书编号,它是一个10位的十进制数字,若要以它作关键字建立一个哈希表,当馆藏书种类不到10,000时,可采用此法构造一个四位数的哈希函数。如果一本书的编号为0-442-20586-4,则:

 

哈希表算法 哈希表算法

5、除留余数法

取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。

H(key)=key MOD p (p<=m)

6、随机数法

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即

H(key)=random(key) ,其中random为随机函数。通常用于关键字长度不等时采用此法。

三、处理冲突的方法:

1、开放定址法

Hi=(H(key)+di) MOD m i=1,2,...,k(k<=m-1)

其中m为表长,di为增量序列

如果di值可能为1,2,3,...m-1,称线性探测再散列。

如果di取值可能为1,-1,2,-2,4,-4,9,-9,16,-16,...k*k,-k*k(k<=m/2)

称二次探测再散列。

如果di取值可能为伪随机数列。称伪随机探测再散列。

例:在长度为11的哈希表中已填有关键字分别为17,60,29的记录,现有第四个记录,其关键字为38,由哈希函数得到地址为5,若用线性探测再散列,如下:

 

哈希表算法

 

2、再哈希法

当发生冲突时,使用第二个、第三个、哈希函数计算地址,直到无冲突时。缺点:计算时间增加。

3、链地址法

将所有关键字为同义词的记录存储在同一线性链表中。

哈希表算法

 

4、建立一个公共溢出区

假设哈希函数的值域为[0,m-1],则设向量HashTable[0..m-1]为基本表,另外设立存储空间向量OverTable[0..v]用以存储发生冲突的记录。



你可能感兴趣的:(【数据结构】)