Automotive radar 信号处理 第5课 先进估计技术(1)

先进的半导体工艺和技术直接影响着automotive radar系统的设计与制造。更高的集成度和更低的成本则定下了未来automotive radar系统发展的基调。随着制造工艺的不断进步,一些先进的估计技术也逐渐被引入。

下面就对automotive radar中的一些较为复杂的信号处理方法进行介绍,我们考虑FMCW雷达,且只分析静止目标的情况。因此,在进行距离-方位估计的时候,可以给出的信号模型为:

d(l,n)\approx \sum _{q=0}^{Q-1} \alpha_{q}exp\left \{ j2 \pi \left [ \frac{2KR_{q}}{c} \frac{n}{f_{s}} + \frac{f_{c}ldsin \theta_{q}}{c} + \frac{2f_{c}R_{q}}{c} \right ]\right \} + \omega(l,n)

 

为了更直观的介绍先进估计技术,对于估计的维度此时减少到了2维,也就是距离和方位,需要说明的是,这样的先进技术是可以扩展到4维的,包括了距离,速度,方位和俯仰信息。上面给出的距离-方位的信号模型,可以利用2D-FFT得到物体的距离和方位信息。而且,利用FFT的方法其算法复杂度也是最小的,为O(LNlogLN),其中N为时域的样本数,L为1维ULA阵列的阵元数目。

利用FFT的方法,虽然算法复杂度并不高,但是由于FFT方法的分辨率是由瑞丽限(Rayleigh limit)决定的,可通过增加FMCW雷达的带宽改善距离分辨率,增加天线阵元的数目以获得更佳的角度分辨率。此时雷达则需要更突出的计算性能以实现期望达到的距离和角度分辨率。下面,我们首先介绍ML(Maximum Likelihood)的方法,然后再对超分辨的方法进行了解。

ML估计

设给出的距离-方位信号模型中的复高斯观测噪声在时空上是相互独立的,可以给出利用该信号模型得到的ML估计为:

min\underset{R_{q}}{\theta_{q}} \sum _{l=0}^{L-1} \sum_{n=0}^{N-1} \left | d(l,n) - \sum _{q=0}^{Q-1} \alpha_{q}exp\left \{ j2 \pi \left [ \frac{2KR_{q}}{c} \frac{n}{f_{s}} + \frac{f_{c}ldsin \theta_{q}}{c} + \frac{2f_{c}R_{q}}{c} \right ]\right \}\right | ^{2}

因此,根据(R,θ)的搜索空间的间隔尺寸,ML估计的方法可以提供超出瑞丽限的分辨率,其中,该瑞丽限是由雷达系统的带宽和天线阵元的数目决定的。但是,该算法的实施复杂性则依赖于目标的数目与搜索空间的基数大小,可以得到ML算法的计算复杂度为O(|R,θ|^Q),此时的计算复杂度已经变得较高。后面我们将介绍超分辨的方法,该方法与ML算法相比,在较低的计算复杂度的前提下,实现了更高分辨率的参数估计

另外,欢迎关注我的公众号:雷达说

专注于雷达相关知识和先进技术分享的公众号

行业交流微信群


感谢~

你可能感兴趣的:(Automotive,radar,信号处理系列)