- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- python ray分布式_取代 Python 多进程!伯克利开源分布式框架 Ray
weixin_39946313
pythonray分布式
Ray由伯克利开源,是一个用于并行计算和分布式Python开发的开源项目。本文将介绍如何使用Ray轻松构建可从笔记本电脑扩展到大型集群的应用程序。并行和分布式计算是现代应用程序的主要内容。我们需要利用多个核心或多台机器来加速应用程序或大规模运行它们。网络爬虫和搜索所使用的基础设施并不是在某人笔记本电脑上运行的单线程程序,而是相互通信和交互的服务的集合。云计算承诺在所有维度上(内存、计算、存储等)实
- OPENCL之SIMT与SIMD在架构上的主要区别是什么?
糯米宝宝
gpuopencv
SIMT(单指令多线程)与SIMD(单指令多数据)在架构上的主要区别体现在以下几个方面:执行单元的组织方式:SIMD:采用的是多数据流架构,即同一条指令同时作用于多个数据元素。这种架构特别适合于多媒体应用等数据密集型运算。SIMT:采用的是多线程架构,即同一条指令由多个线程并行执行。每个线程可以有不同的分支行为和执行路径,从而实现线程级的并行计算。软件暴露的信息:SIMD:向软件公开SIMD宽度(
- Python | 使用Joblib模块加快任务处理速度
python收藏家
pythonpython
在本文中,我们将了解如何通过使用Joblib模块在Python中并行执行代码来大幅减少大型代码的执行时间。Joblib模块简介Joblib是一个用于Python的开源库,它提供了一些用于并行计算和内存映射的工具,旨在提高科学计算和数据分析的效率。Python中的Joblib模块特别用于使用Pipelines并行执行任务,而不是一个接一个地顺序执行任务。Joblib模块允许用户通过利用设备中存在的所
- 【并行计算】Strong scaling和weak Scaling
栏杆拍遍看吴钩
pytorch并行计算
可以从这个角度来区分:StrongScaling在扩展时是壮壮的,即使增加负载,也不需要调整机器。WeakScaling在扩展时是弱弱的,如果要增加负载,也要同步增加机器。Strong的目的是为了知道当前的机器所能够提供的最大并行能力。Weak的目的是为了保证当前的负载均衡性一致的情况下比较不同数量机器的并行效果。
- NUMA架构
weixin_34220623
数据库内存管理操作系统
最近在学习.NET的并行计算技术,学到一个服务器NUMA架构,NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,在系统延迟方面表现都很优秀。Windows一向都没有在NUMA架构上有多少表现机会,AMD的多路系统大多也会用在UNIX/Linux上。Intel如期进入了NUMA架构的怀抱,英特尔最新的服务器处理器至强5500是一项重大的结构变革。与上一代至强处理器相比,至强5500采用了
- 模式转变-并行编程方面的设计注意事项
guoxiaoqian8028
并行计算
本文以VisualStudio工具的预发布版为基础。文中的所有信息均有可能发生变更。本文将介绍以下内容:并行计算并发编程性能提高本文使用了以下技术:多线程目录并发和并行结构化多线程数据并行性数据流数据并行性单程序,多数据并发数据结构总结从1986到2002年,微处理器的性能每年提高了52%。这一惊人的技术进步源自晶体管成本依据摩尔法则不断地缩减,以及处理器厂商在工程方面的出色表现。微软的研究员Ji
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- ISP(图像信号处理器)是什么?
FoGoiN
嵌入式硬件单片机物联网
由于刚接触到开发版,认识到了图像处理器(imageprocessor),又名imageprocessingengine,imageprocessingunit(IPU),imagesignalprocessor(ISP)。和电脑的GPU类似,通常采并行计算。功能:Bayertransformation图像传感器(就是光电转换器)中的光电二极管(吸收光子产生电流)其实是无法识别颜色的,为了能够识别颜
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- Python 多线程和多进程用法
SmallerFL
Python相关python服务器linux多进程多线程
文章目录1.Python多进程1.1常见用法1.创建进程2.进程池3.进程间通信4.进程同步1.2结合进度条显示2.Python多线程2.1常见用法1.使用线程池2.2结合进度条显示1.Python多进程1.1常见用法multiprocessing是Python标准库中的一个模块,用于在多核或多处理器环境中并行执行任务。它提供了一种便捷的方法来创建和管理多个进程,以实现并行计算。multiproc
- 《C++与新兴硬件技术的完美融合:开启未来科技新篇章》
程序猿阿伟
c++科技开发语言
在科技飞速发展的今天,新兴硬件技术不断涌现,为软件开发带来了前所未有的机遇和挑战。C++作为一种强大而高效的编程语言,如何更好地与这些新兴硬件技术结合,成为了众多开发者关注的焦点。首先,在与GPU(图形处理单元)的结合方面,C++展现出了巨大的潜力。GPU拥有强大的并行计算能力,能够快速处理大量的数据和复杂的计算任务。通过CUDA和OpenCL等技术,C++开发者可以充分利用GPU的性能优势,实现
- Unity3D UI Toolkit数据动态绑定详解
Thomas_YXQ
uijava开发语言Unity游戏开发前端c#
前言在Unity3D中,ComputeShader是一种强大的工具,用于在GPU上执行并行计算任务,这些任务通常涉及大量的数据处理,如图像处理、物理模拟等。然而,由于GPU的并行特性,ComputeShader中的线程(也称为工作项)之间默认是不进行同步的。这意味着每个线程都是独立运行的,且无法直接访问其他线程的数据或执行状态,除非通过特定的机制进行通信。对惹,这里有一个游戏开发交流小组,大家可以
- PyTorch深度学习实战(26)—— PyTorch与Multi-GPU
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
当拥有多块GPU时,可以利用分布式计算(DistributedComputation)与并行计算(ParallelComputation)的方式加速网络的训练过程。在这里,分布式是指有多个GPU在多台服务器上,并行指一台服务器上的多个GPU。在工作环境中,使用这两种方式加速模型训练是非常重要的技能。本文将介绍PyTorch中分布式与并行的常见方法,读者需要注意这二者的区别,并关注它们在使用时的注意
- C语言中的多线程编程:POSIX线程库(Pthreads)入门与实战(一)
JJJ69
学习C语言吧开发语言c语言
目录一、引言背景介绍文章目的与读者定位二、夽线程基础概念线程与进程的关系并发与并行的区别多线程的优势与挑战三、POSIX线程库(Pthreads)简介POSIX标准与Pthreads规范Pthreads的兼容性与移植性总结一、引言背景介绍随着计算机硬件技术的飞速发展,多核处理器已经成为现代计算设备的标准配置。这种架构变革使得单个处理器芯片能够容纳多个执行核心,从而显著提升了并行计算能力。面对这样的
- 并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹
2401_85763639
pytorch人工智能python
并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹在深度学习领域,模型的规模和复杂性不断增长,单GPU的计算能力已难以满足需求。多GPU并行计算成为提升训练效率的关键。PyTorch作为灵活且强大的深度学习框架,通过torch.cuda.nccl模块提供了对NCCL(NVIDIACollectiveCommunicationsLibrary)的支持,为多GPU通信提供
- HPC&AI并行计算集群Slurm作业调度系统对通用资源(GRES)的调度
技术瘾君子1573
并行计算AI并行计算Slurm调度系统MPS管理GPU管理MIG多实例管理GPU切片
一、概述Slurm支持定义和调度任意通用RESources的功能(GRES)。为特定GRES类型启用了其他内置功能,包括图形处理单元(GPU)、CUDA多进程服务(MPS)设备,并通过可扩展的插件机制进行分片。二、配置默认情况下,群集的配置中未启用任何GRES。您必须在slurm.conf配置文件中明确指定要管理的GRES。的配置参数兴趣是GresTypes和Gres。有关详细信息,请参见slur
- CUDA指南-CUDA简介与开发环境搭建
小虾米欸
CUDA指南CUDA
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的并行计算平台和编程模型,它允许开发者利用NVIDIAGPU进行高效的通用计算任务。以下是对CUDA的详细介绍:GPU与CPU的不同GPU(图形处理单元)与CPU(中央处理单元)在设计和功能上有所不同。GPU拥有更多的处理核心,专为并行处理设计,适合执行大量数据的并行计算任务。相比之下,CPU拥有较少的
- 【赵渝强老师】Spark中的RDD
赵渝强老师
大数据技术spark大数据分布式
RDD(ResilientDistributedDataset)叫做弹性分布式数据集,它是Spark中最基本、也是最重要的的数据模型。它由分区组成,每个分区被一个Spark的Worker从节点处理,从而支持分布式的并行计算。RDD通过检查点Checkpoint的方式提供自动容错的功能,并且具有位置感知性调度和可伸缩的特性。通过RDD也提供缓存的机制,可以极大地提高数据处理的速度。 视频讲解如
- 曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?
Chauvin912
大模型行业调研科普transformer架构深度学习
曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?Mamba是一种新兴的深度学习架构,旨在解决长序列数据的建模问题。它通过将状态空间模型(StateSpaceModels,SSM)与选择性机制、并行计算等方法相结合,实现了高效的长序列处理。这篇博客将深入探讨Mamba架构的各个组成部分,解释其背后的原理。1.状态空间模型(SSM)1.1状态空间模型的基本原理状态空间模型是
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- 【GPU驱动开发】-GPU架构简介
怪怪王
GPU驱动驱动开发GPUAIchatgpt架构
前言不必害怕未知,无需恐惧犯错,做一个Creator!GPU(GraphicsProcessingUnit,图形处理单元)是一种专门用于处理图形和并行计算的处理器。GPU系统架构通常包括硬件和软件层面的组件。一、总体流程应用程序请求图形操作:应用程序通过图形API(如OpenGL、Vulkan)发送图形操作请求。图形API调用GPU驱动程序:图形API将请求传递给GPU驱动程序。GPU驱动程序解释
- Transformer结构介绍和Pyotrch代码实现
肆十二
Pytorch语法transformer深度学习人工智能
Transformer结构介绍和Pyotrch代码实现关注B站查看更多手把手教学:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)基本结构介绍Transformer结构是近年来自然语言处理(NLP)领域的重要突破,它完全基于注意力机制(AttentionMechanism)来实现,克服了传统RNN模型无法并行计算以及容易丢失长距离依赖信息的问题。Transformer
- 什么是Rust 语言
chunmiao3032
rust开发语言后端
Rust是一种专注于性能和内存安全的系统编程语言,其设计目标包括提供:零开销抽象、移动语义、内存安全、线程无数据竞争、类型安全和实时gc等功能。Rust使用RAII(ResourceAcquisitionIsInitialization)管理资源,通过所有权系统以编译时检查内存安全。它强调零开销的抽象和安全的并行计算。Rust语言的前景非常广阔,包括以下几个方面:系统编程:由于Rust的出色性能和
- CUDA与CUDNN 关系
XF鸭
小知识caffe深度学习人工智能
CUDA与cuDNN1、什么是CUDACUDA(ComputeUnifiedDeviceArchitecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。2、什么是CUDNNNVIDIAcuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIAcuDNN可以集成到更高级别的机器学
- Unity中的Compute Shader
popcorn丶
渲染游戏开发unity图像处理
Unity中的ComputeShader前言一、定义二、创建三、computer代码解析四、c#调用方式五、计算关系六、平台支持七、引用前言游戏开发中,dot编程在处理大数量级的运算应用已经越来越广泛了,而GPU本身对大规模数据的并行计算已经越来越强了,因此现在许多游戏处理大量物体的计算可以利用GPU这一特性,加快并发计算速度,ComputeShader就是专门利用这一特性的。提示:以下是本篇文章
- TiDB 7.5.0 LTS 高性能数据批处理方案
TiDB_PingCAP
tidb分布式云原生数据库
过去,TiDB由于不支持存储过程、大事务的使用也存在一些限制,使得在TiDB上进行一些复杂的数据批量处理变得比较复杂。TiDB在面向这种超大规模数据的批处理场景,其能力也一直在演进,其复杂度也变得越来越低:○从TiDB5.0开始,TiFlash支持MPP并行计算能力,在大批量数据上进行聚合、关联的查询性能有了极大的提升○到了TiDB6.1版本,引入了BATCHDML(https://docs.pi
- AI芯片技术架构有哪些?FPGA芯片定义及结构分析
Hack电子
人工智能架构fpga开发
点击蓝字关注我们关注、星标公众号,精彩内容每日送达来源:网络素材ai芯片技术架构有哪些?AI芯片的技术架构可以根据其设计方式和特点进行分类。以下是几种常见的AI芯片技术架构:GPU(图形处理器)架构:GPU最初是用于图形渲染和游戏处理的,但由于其高度并行的特性,逐渐被应用于深度学习计算。GPU架构采用多个计算单元(CUDA核心)进行并行计算,能够高效地执行浮点运算和矩阵计算。NVIDIA的Tens
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul