(三)HBase的Java代码开发

文章目录

  • HBase的Java代码开发
    • 配置Maven工程pom.xml文件的依赖
    • (一)创建表
    • (二)删除表
    • (三)向表中添加数据
    • (四)删除数据
    • (五)查询数据
      • 1.Get查询
      • 2.Scan查询
      • 3.RowFilter行键过滤器
      • 4.FamilyFilter列族过滤器
      • 5.QualifierFilter列过滤器
      • 6.ValueFilter值过滤器
      • 7.SingleColumnValueFilter单列值过滤器
      • 8.PrefixFilter前缀过滤器
      • 9.PageFilter分页过滤器

HBase的Java代码开发

配置Maven工程pom.xml文件的依赖

    <repositories>
        <repository>
            <id>clouderaid>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/url>
        repository>
    repositories>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>2.6.0-mr1-cdh5.14.0version>
        dependency>
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-clientartifactId>
            <version>1.2.0-cdh5.14.0version>
        dependency>

        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-serverartifactId>
            <version>1.2.0-cdh5.14.0version>
        dependency>
        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.12version>
            <scope>testscope>
        dependency>
        <dependency>
            <groupId>org.testnggroupId>
            <artifactId>testngartifactId>
            <version>6.14.3version>
            <scope>testscope>
        dependency>
    dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <version>3.0version>
                <configuration>
                    <source>1.8source>
                    <target>1.8target>
                    <encoding>UTF-8encoding>
                    
                configuration>
            plugin>
            
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>2.4.3version>
                <executions>
                    <execution>
                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <minimizeJar>falseminimizeJar>
                        configuration>
                    execution>
                executions>
            plugin>
        plugins>
    build>

(一)创建表

创建myuser表,两个列族,分别为f1,f2。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import java.io.IOException;	
//创建myuser表,两个列族,分别为f1,f2。
public class CrreateHBaseTable {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        //连接hbase集群不需要指定hbase主节点的ip和端口
        //只需指定各节点zooleeper的ip和端口,只指定一台zookeeper也可以
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");

        //创建连接池对象
        Connection connection = ConnectionFactory.createConnection(configuration);

        //对数据库进行DDL操作时,要获取管理员对象
        Admin admin = connection.getAdmin();

        //指定我们创建的表的名字: myuser
        TableName myuser = TableName.valueOf("myuser");
        HTableDescriptor hTableDescriptor = new HTableDescriptor(myuser);

        //指定myuser表的列族: f1、f2
        HColumnDescriptor f1 = new HColumnDescriptor("f1");
        HColumnDescriptor f2 = new HColumnDescriptor("f2");
        hTableDescriptor.addFamily(f1);
        hTableDescriptor.addFamily(f2);

        //创建表
        admin.createTable(hTableDescriptor);

        //释放资源
        admin.close();
        connection.close();
    }
}

(二)删除表

删除myuser表。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;

import java.io.IOException;
//删除myuser表
public class DeleteHBaseTable {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        //连接hbase集群不需要指定hbase主节点的ip和端口
        //只需指定各节点zooleeper的ip和端口,只指定一台zookeeper也可以
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");

        //创建连接池对象
        Connection connection = ConnectionFactory.createConnection(configuration);

        //对数据库进行DDL操作时,要获取管理员对象
        Admin admin = connection.getAdmin();

        TableName myuser = TableName.valueOf("myuser");
        admin.disableTable(myuser);
        admin.deleteTable(myuser);

        //释放资源
        admin.close();
        connection.close();
    }
}

(三)向表中添加数据

向myuser表中添加数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
//向myuser表中添加数据, rowkey="0001"  f1:name = "zhangsan"  f1:name = 18  f1:id = 25 f2:address = "地球人"
public class AddData {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        
        //获取表
        Table table = connection.getTable(TableName.valueOf("myuser"));

        //创建put对象,并指定rowkey值
        Put put = new Put("0001".getBytes());
        put.addColumn("f1".getBytes(),"name".getBytes(),"zhangsan".getBytes());
        put.addColumn("f1".getBytes(),"age".getBytes(), Bytes.toBytes(18));
        put.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(25));
        put.addColumn("f1".getBytes(),"address".getBytes(),Bytes.toBytes("地球人"));

        //执行添加操作
        table.put(put);
        //释放资源
        table.close();
        
        connection.close();
    }
}

(四)删除数据

删除数据rowkey为0001的数据记录

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import java.io.IOException;
//删除数据rowkey为0001的数据记录
public class DeleteData {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        //获取表
        Table table = connection.getTable(TableName.valueOf("myuser"));
        
        //删除数据
        Delete delete = new Delete("0001".getBytes());
        table.delete(delete);
        
        table.close();
        connection.close();
    }
}

(五)查询数据

向myuser表中插入一批数据用作查询操作

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class InsertBatchData {
    public static void main(String[] args) throws IOException {
        //获取连接
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum", "node01:2181,node02:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        //获取表
        Table myuser = connection.getTable(TableName.valueOf("myuser"));
        //创建put对象,并指定rowkey
        Put put = new Put("0002".getBytes());
        put.addColumn("f1".getBytes(),"id".getBytes(), Bytes.toBytes(1));
        put.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("曹操"));
        put.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(30));
        put.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("沛国谯县"));
        put.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("16888888888"));
        put.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("helloworld"));

        Put put2 = new Put("0003".getBytes());
        put2.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(2));
        put2.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("刘备"));
        put2.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(32));
        put2.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put2.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("幽州涿郡涿县"));
        put2.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("17888888888"));
        put2.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("talk is cheap , show me the code"));


        Put put3 = new Put("0004".getBytes());
        put3.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(3));
        put3.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("孙权"));
        put3.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(35));
        put3.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put3.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("下邳"));
        put3.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("12888888888"));
        put3.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("what are you 弄啥嘞!"));

        Put put4 = new Put("0005".getBytes());
        put4.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(4));
        put4.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("诸葛亮"));
        put4.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(28));
        put4.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put4.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("四川隆中"));
        put4.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("14888888888"));
        put4.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("出师表你背了嘛"));

        Put put5 = new Put("0006".getBytes());
        put5.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(5));
        put5.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("司马懿"));
        put5.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(27));
        put5.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put5.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("哪里人有待考究"));
        put5.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("15888888888"));
        put5.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("跟诸葛亮死掐"));


        Put put6 = new Put("0007".getBytes());
        put6.addColumn("f1".getBytes(),"id".getBytes(),Bytes.toBytes(5));
        put6.addColumn("f1".getBytes(),"name".getBytes(),Bytes.toBytes("xiaobubu—吕布"));
        put6.addColumn("f1".getBytes(),"age".getBytes(),Bytes.toBytes(28));
        put6.addColumn("f2".getBytes(),"sex".getBytes(),Bytes.toBytes("1"));
        put6.addColumn("f2".getBytes(),"address".getBytes(),Bytes.toBytes("内蒙人"));
        put6.addColumn("f2".getBytes(),"phone".getBytes(),Bytes.toBytes("15788888888"));
        put6.addColumn("f2".getBytes(),"say".getBytes(),Bytes.toBytes("貂蝉去哪了"));

        List<Put> listPut = new ArrayList<Put>();
        listPut.add(put);
        listPut.add(put2);
        listPut.add(put3);
        listPut.add(put4);
        listPut.add(put5);
        listPut.add(put6);

        myuser.put(listPut);
        myuser.close();
        connection.close();
    }
}

1.Get查询

查询rowkey为0003的f1列族所有数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询rowkey为0003的f1列族所有数据
public class GetByRowKey {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        //通过Get对象,指定rowkey,默认查询这个rowkey的所有数据
        Get get = new Get(Bytes.toBytes("0003"));

        //限制只查询f1列族下面所有列的值
        get.addFamily("f1".getBytes());

        //执行get查询,返回一个result对象,所有rowkey为0003的单元格的所有信息都会都封装在这个对象中
        Result result = table.get(get);

        //将每个单元格的所有信息封装在cell对象内,再放入集合中
        List<Cell> cells = result.listCells();
        //遍历cells, 看cell中封装了哪些信息
        for (Cell cell : cells) {
            byte[] value = CellUtil.cloneValue(cell);//获取单元格的值
            byte[] rowkey = CellUtil.cloneRow(cell);//获取单元格对应的rowkey
            byte[] columnName = CellUtil.cloneQualifier(cell);//获取单元格所属的列名
            byte[] familyName = CellUtil.cloneFamily(cell);//获取单元格所属的列族名

            System.out.println(Bytes.toString(familyName));
            System.out.println(Bytes.toString(columnName));
            System.out.println(Bytes.toString(rowkey));
            
            //列名是Id和列名是age的列对应的value整数int类型,要判断一下转成int类型
            if("id".equals(Bytes.toString(columnName)) || "age".equals(Bytes.toString(columnName))){
                System.out.println(Bytes.toInt(value));
            }else {
                System.out.println(Bytes.toString(value));
            }
        }
        table.close();
        connection.close();
    }
}

2.Scan查询

查询rowkey为[0003,0007)之间的数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询rowkey为[0003,0007)之间的数据
public class ScanRangeData {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();//默认会全表扫描,所有下面要添加约束

        //扫描f1列族
        scan.addFamily("f1".getBytes());

        //扫描f2列族的phone字段
        scan.addColumn("f2".getBytes(),"phine".getBytes());

        //设定扫描的起始行
        scan.setStartRow("0003".getBytes());
        scan.setStopRow("0007".getBytes());

        //通过getScan查询获得表中符合要求的数据, 返回的是多条数据
        ResultScanner scanner = table.getScanner(scan);

        //遍历ResultScanner 得到每一条数据,每一条数据都是封装在result对象里面了
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] valueArr = CellUtil.cloneValue(cell);

                if("id".equals(Bytes.toString(qualifierName)) || "age".equals(Bytes.toString(qualifierName))){
                    int value = Bytes.toInt(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }else {
                    String value = Bytes.toString(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }
            }
        }

        table.close();
        connection.close();
    }
}

3.RowFilter行键过滤器

查询所有的rowkey比0003小的所有的数据

package cn.com.vivo.day01;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.RowFilter;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询所有的rowkey比0003小的所有的数据
public class RowFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        /*  RowFilter需要加上两个参数
            第一个参数就是我们的比较规则
            第二个参数就是我们的比较对象  */
       BinaryComparator binaryComparator = new BinaryComparator("0003".getBytes());//获取比较对象
        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, binaryComparator);

        //为scan对象设置过滤器
        scan.setFilter(rowFilter);

        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] valueArr = CellUtil.cloneValue(cell);

                if("id".equals(Bytes.toString(qualifierName)) || "age".equals(Bytes.toString(qualifierName))){
                    int value = Bytes.toInt(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }else {
                    String value = Bytes.toString(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }
            }
        }

        table.close();
        connection.close();
    }
}

4.FamilyFilter列族过滤器

查询列族名包含2的所有数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;

//查询列族名包含2的所有数据
public class FamilyFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));
        Scan scan = new Scan();

        // familyFilter来实现列族的过滤
        SubstringComparator substringComparator = new SubstringComparator("2");
        FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        scan.setFilter(familyFilter);

        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] value = CellUtil.cloneValue(cell);
                System.out.println(Bytes.toString(familyName)+"\t"
                        +Bytes.toString(qualifierName)+"\t"
                        +Bytes.toString(rowkey)+"\t"
                        +Bytes.toString(value));
            }
        }

        table.close();
        connection.close();
    }
}

5.QualifierFilter列过滤器

查询列名包含name的所有数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询列名包含name的所有数据
public class QualifierFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        //QualifierFilter来实现列值过滤
        SubstringComparator substringComparator = new SubstringComparator("name");
        QualifierFilter qualifierFilter = new QualifierFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        scan.setFilter(qualifierFilter);

        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] value = CellUtil.cloneValue(cell);
                System.out.println(Bytes.toString(familyName)+"\t"
                        +Bytes.toString(qualifierName)+"\t"
                        +Bytes.toString(rowkey)+"\t"
                        +Bytes.toString(value));
            }
        }

        table.close();
        connection.close();
    }
}

6.ValueFilter值过滤器

查询所有数据中包含字符串"8"的数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询所有数据中包含8的数据
public class ValueFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        //ValueFilter来实现列值过滤
        SubstringComparator substringComparator = new SubstringComparator("8");
        ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
        scan.setFilter(valueFilter);

        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] value = CellUtil.cloneValue(cell);
                System.out.println(Bytes.toString(familyName)+"\t"
                        +Bytes.toString(qualifierName)+"\t"
                        +Bytes.toString(rowkey)+"\t"
                        +Bytes.toString(value));
            }
        }

        table.close();
        connection.close();
    }
}

7.SingleColumnValueFilter单列值过滤器

查询f1 列族、name列、值为刘备的数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询f1 列族、name列、值为刘备的数据
//类似与 select * from myuser where name = '刘备'
public class SingleColumnValueFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        //SingleColumnValueFilter来实现单列值过滤
        SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
                "f1".getBytes(),
                "name".getBytes(),
                CompareFilter.CompareOp.EQUAL,
                "刘备".getBytes()
        );

        scan.setFilter(singleColumnValueFilter);


        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] valueArr = CellUtil.cloneValue(cell);

                if("id".equals(Bytes.toString(qualifierName)) || "age".equals(Bytes.toString(qualifierName))){
                    int value = Bytes.toInt(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }else {
                    String value = Bytes.toString(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }
            }
        }

        table.close();
        connection.close();
    }
}

扩展: SingleColumnValueExcludeFilter 列值排除过滤器,可实现与列值过滤器相反的功能。类似于下面SQL:

select * from myuser where name != ‘刘备’

8.PrefixFilter前缀过滤器

查询rowkey前缀以 00开头的所有的数据

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//查询rowkey前缀以  00开头的所有的数据
public class PrefixFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        //PrefixFilter来实现前缀过滤
        PrefixFilter prefixFilter = new PrefixFilter("00".getBytes());
        scan.setFilter(prefixFilter);

        //执行查询
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] valueArr = CellUtil.cloneValue(cell);

                if("id".equals(Bytes.toString(qualifierName)) || "age".equals(Bytes.toString(qualifierName))){
                    int value = Bytes.toInt(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }else {
                    String value = Bytes.toString(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }
            }
        }

        table.close();
        connection.close();
    }
}

9.PageFilter分页过滤器

每页显示2个rowkey的数据,查询第3页的数据。

package cn.com.vivo.day01;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.PageFilter;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.util.List;
//每页显示2个rowkey的数据,查询第3页的数据。
public class PageFilterQuery {
    public static void main(String[] args) throws IOException {
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table table = connection.getTable(TableName.valueOf("myuser"));

        Scan scan = new Scan();

        int pageNum = 3;//从第三页开始查询
        int pageSize = 2;//每页显示2条rowkey的所有数据

        //分页过滤器需要我们提供从页面起始的rowkey, 我们要根据查询的页码来寻找起始的rowkey
        if(pageNum == 1){//如果查询的是第一页,可以使用""来表示第一个rowkey
            //设置一次向后扫描多少条数据,即设置pageSize
            scan.setMaxResultSize(pageSize);
            scan.setStartRow("".getBytes());//表示从第一个rowkey开始查询
        }else {
            //我们要想办法获取第三页的起始rowkey是什么
            String startRow = "";
            int tempPageSize = (pageNum - 1) * pageSize +1;//注意加1后的到的才是第3页的起始rowkey
            scan.setMaxResultSize(tempPageSize);
            PageFilter pageFilter = new PageFilter(tempPageSize);
            scan.setFilter(pageFilter);
            ResultScanner scanner = table.getScanner(scan);
            //遍历的最后一条数据中有我们要找的第三页的startRow
            for (Result result : scanner) {
                List<Cell> cells = result.listCells();
                int startRowIndex = cells.size() - 1;
                byte[] startRowArr = CellUtil.cloneRow(cells.get(startRowIndex));
                startRow = new String(startRowArr);
            }
            scan.setMaxResultSize(pageSize);
            scan.setStartRow(startRow.getBytes());
        }
        PageFilter filter = new PageFilter(pageSize);
        scan.setFilter(filter);
        ResultScanner scanner = table.getScanner(scan);
        for (Result result : scanner) {
            List<Cell> cells = result.listCells();
            for (Cell cell : cells) {
                byte[] familyName = CellUtil.cloneFamily(cell);
                byte[] qualifierName = CellUtil.cloneQualifier(cell);
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] valueArr = CellUtil.cloneValue(cell);

                if("id".equals(Bytes.toString(qualifierName)) || "age".equals(Bytes.toString(qualifierName))){
                    int value = Bytes.toInt(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }else {
                    String value = Bytes.toString(valueArr);
                    System.out.println(Bytes.toString(familyName)+"\t"
                            +Bytes.toString(qualifierName)+"\t"
                            +Bytes.toString(rowkey)+"\t"
                            +value);
                }
            }
        }

    }
}

你可能感兴趣的:(HBase)