1.简述人工智能、机器学习和深度学习三者的联系与区别。
搞清三者关系的最简单方法,就是把它们想象成一个同心圆,其中人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习,不过却是如今人工智能爆炸式发展的根源,处于前两者的范围之内。
2. 全连接神经网络与卷积神经网络的联系与区别。
卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节点就是一个神经元。在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连,为了展示每一层神经元的维度,一般会将每一层卷积层的节点组织成一个三维矩阵
3.理解卷积计算。
以digit0为例,进行手工演算。
from sklearn.datasets import load_digits #小数据集8*8
digits = load_digits()
0 | 0 | 5 | 13 | 9 | 1 | 0 | 0 |
0 | 0 | 13 | 15 | 10 | 15 | 5 | 0 |
0 | 3 | 15 | 2 | 0 | 11 | 8 | 0 |
0 | 4 | 12 | 0 | 0 | 8 | 8 | 0 |
0 | 5 | 8 | 0 | 0 | 9 | 8 | 0 |
0 | 4 | 11 | 0 | 1 | 12 | 7 | 0 |
0 | 2 | 14 | 5 | 10 | 12 | 0 | 0 |
0 | 0 | 6 | 13 | 10 | 0 | 0 | 0 |
结果:
4.理解卷积如何提取图像特征。
读取一个图像;
以下矩阵为卷积核进行卷积操作;
显示卷积之后的图像,观察提取到什么特征。
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import pylab
from scipy.signal import convolve2d
A = Image.open(r'C:\Users\曾梓楷\Desktop\曾梓楷\0.png')
L = A.convert('L')
yuantu = np.array(A) # 原图
huidutu = np.array(L) # 灰度图
k1 = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]]) # 垂直边缘检查
k2 = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]]) # 水平边缘
k3 = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
p1 = convolve2d(huidutu, k1, boundary='symm', mode='same')
p2 = convolve2d(huidutu, k2, boundary='symm', mode='same')
p3 = convolve2d(huidutu, k3, boundary='symm', mode='same')
plt.matshow(p1)
plt.matshow(p2)
plt.matshow(p3)
pylab.show()
卷积API
scipy.signal.convolve2d
tf.keras.layers.Conv2D
5. 安装Tensorflow,keras
参考:https://blog.csdn.net/u011119817/article/details/88309256
6. 设计手写数字识别模型结构,注意数据维度的变化。
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D
model = tf.keras.Sequential()
model.add(Conv2D(…))
model.add(MaxPool2D(…))
#可以上传手动演算的每层数据结构的变化过程。model.summary()
参考:
https://www.jianshu.com/p/afe485aa08ce
https://blog.csdn.net/junjun150013652/article/details/82217571